Description
The amount of substance n is a base physical quantity, and the corresponding SI unit is the mole [mol]. Amount of substance (sometimes abbreviated as 'amount' or 'chemical amount') is proportional to the number N_{X} of specified elementary entities X, and the universal proportionality constant is the reciprocal value of the Avogadro constant (SI),
n_{X} = N_{X}·N_{A}^{-1}
n_{X} contained in a system can change due to internal and external transformations,
dn_{X} = d_{i}n_{X} + d_{e}n_{X}
In the absence of nuclear reactions, the amount of any atom is conserved, e.g., for carbon d_{i}n_{C} = 0. This is different for chemical substances or ionic species which are produced or consumed during the advancement of a reaction r,
A change in the amount of X_{i}, dn_{i}, in an open system is due to both the internal formation in chemical transformations, d_{r}n_{i}, and the external transfer, d_{e}n_{i}, across the system boundaries. dn_{i} is positive if X_{i} is formed as a product of the reaction within the system. d_{e}n_{i} is negative if X_{i} flows out of the system and appears as a product in the surroundings (Cohen 2008 IUPAC Green Book).
Abbreviation: n [mol]
Reference: Cohen 2008 IUPAC Green Book, Gnaiger 1993 Pure Appl Chem, Gnaiger 2020 BEC MitoPathways
Communicated by Gnaiger E (last update 2020-05-27)
References
Bioblast link | Reference | Year |
---|---|---|
Bureau International des Poids et Mesures 2019 The International System of Units (SI) | Bureau International des Poids et Mesures (2019) The International System of Units (SI). 9th edition:117-216. ISBN 978-92-822-2272-0 | 2019 |
Cohen 2008 IUPAC Green Book | Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor HL (2008) Quantities, Units and Symbols in Physical Chemistry. IUPAC Green Book 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge. | 2008 |
Gnaiger 1993 Pure Appl Chem | Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. http://dx.doi.org/10.1351/pac199365091983 | 1993 |
Gnaiger 2020 BEC MitoPathways | Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5^{th} ed. https://doi.org/10.26124/bec:2020-0002 | BEC 2020.2 |
Gnaiger 2020 MitoFit x | Gnaiger E (2021) The elementary unit — canonical reviewer's comments on: Bureau International des Poids et Mesures (2019) The International System of Units (SI) 9th ed. https://doi.org/10.26124/mitofit:200004.v2 | 2021-09-06 |
BEC 2020.1 doi10.26124bec2020-0001.v1 | Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. https://doi.org/10.26124/bec:2020-0001.v1 | BEC 2020.1 |
Quantity Symbol for quantity Q Symbol for dimension Name of abstract unit u_{Q} Symbol for unit u_{Q} [*] elementary entity ^{*,$} U_{X} U elementary unit x count ^{*,$} N_{X} = N·U_{X} X elementary unit x amount of substance ^{*,§} n_{X} = N_{X}·N_{A}^{-1} N mole mol charge ^{*,€} Q_{el} = z_{X}·e·N_{X} I·T coulomb C = A·s length l L meter m mass m M kilogram kg time t T second s electric current I I ampere A thermodynamic temperature T Θ kelvin K luminous intensity I_{v} J candela cd
- [*] SI units, except for the canonical 'elementary unit' [x]. The following footnotes are canonical comments, related to iconic symbols.
- ^{*} For the elementary quantities N_{X}, n_{X}, and Q_{el}, the entity-type X of the elementary entity U_{X} has to be specified in the text and indicated by a subscript: n_{O2}; N_{ce}; Q_{el}.
- ^{$} Count N_{X} equals the number of elementary entities U_{X}. In the SI, the quantity 'count' is explicitly considered as an exception: "Each of the seven base quantities used in the SI is regarded as having its own dimension. .. All other quantities, with the exception of counts, are derived quantities" (Bureau International des Poids et Mesures 2019 The International System of Units (SI)). An elementary entity U_{X} is a material unit, it is not a count (U_{X} is not a number of U_{X}). N_{X} has the dimension X of a count and U_{X} has the dimension U of an elementary entity; both quantities have the same abstract unit, the 'elementary unit' [x].
- ^{§} Amount n_{X} is an elementary quantity, converting the elementary unit [x] into the SI base unit mole [mol] using the Avogadro constant N_{A}.
- ^{€} Charge is a derived SI quantity. Charge is an elementary quantity, converting the elementary unit [x] into coulombs [C] using the elementary charge e, or converting moles [mol] into coulombs [C] using the Faraday constant F. z_{X} is the charge number per elementary entity U_{X}, which is a constant for any defined elementary entity U_{X}. Q_{el} = z_{X}·F·n_{X}
- Bioblast links: SI base units - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
- Entity, count, and number, and SI base quantities / SI base units
Quantity name Symbol Unit name Symbol Comment elementary U_{X} elementary unit [x] U_{X}, U_{B}; [x] not in SI count N_{X} elementary unit [x] N_{X}, N_{B}; [x] not in SI number N - dimensionless = N_{X}·U_{X}^{-1} amount of substance n_{B} mole [mol] n_{X}, n_{B} electric current I ampere [A] A = C·s^{-1} time t second [s] length l meter [m] SI: metre mass m kilogram [kg] thermodynamic temperature T kelvin [K] luminous intensity I_{V} candela [cd]
- Fundamental relationships
- » Avogadro constant N_{A}
- » Boltzmann constant k
- » elementary charge e
- » Faraday constant F
- » gas constant R
- » electrochemical constant f
- Fundamental relationships
- SI and related concepts
MitoPedia concepts:
MiP concept,
Ergodynamics
MitoPedia topics:
Substrate and metabolite