Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information


From Bioblast

high-resolution terminology - matching measurements at high-resolution



Exergy includes external and internal work. Exergy as the external work is defined in the First Law of thermodynamics as a specific form of energy. Exergy as the dissipated Gibbs or Helmholtz energy is the irreversibly dissipated (internal) loss of the potential of performing work as defined in the Second Law of Thermodynamics.

Changes of exergy dG plus bound energy yield the enthalpy change:

dH = dG + T∙dS = dG + dB

Abbreviation: E; various [J]

Reference: Gnaiger 1993 Pure Appl Chem

Communicated by Gnaiger E 2022-07-11


Click to expand or collaps
»Bioblast links: Energy and exergy - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
  • Joule [J]; 1 J = 1 N·m = 1 V·C; 1 cal = 4.184 J
Fundamental relationships
» Energy
» Exergy
» Extensive quantity
» Force
» Pressure
» Intensive quantity
Forms of energy
» Internal-energy dU
» Enthalpy dH
» Heat deQ
» Bound energy dB
Forms of exergy
» Helmholtz energy dA
» Gibbs energy dG
» Work deW
» Dissipated energy diD


  1. Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - »Bioblast link«
  2. Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed.

MitoPedia concepts: Ergodynamics