Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Gruenig 2017 Toxicol In Vitro

From Bioblast
Publications in the MiPMap
Grünig D, Felser A, Bouitbir J, Krähenbühl S (2017) The catechol-O-methyltransferase inhibitors tolcapone and entacapone uncouple and inhibit the mitochondrial respiratory chain in HepaRG cells. Toxicol In Vitro 42:337-47.

» PMID: 28526448

Gruenig D, Felser A, Bouitbir J, Kraehenbuehl S (2017) Toxicol In Vitro

Abstract: The catechol-O-methyltransferase inhibitor tolcapone causes hepatotoxicity and mitochondrial damage in animal models. We studied the interaction of tolcapone with mitochondrial respiration in comparison to entacapone in different experimental models. In HepaRG cells (human cell-line), tolcapone decreased the ATP content (estimated IC50 100±15μM) and was cytotoxic (estimated IC50 333±45μM), whereas entacapone caused no cytotoxicity and no ATP depletion up to 200μM. Cytochrome P450 induction did not increase the toxicity of the compounds. In HepaRG cells, tolcapone (not entacapone) inhibited maximal complex I- and complex II-linked oxygen consumption. In intact mouse liver mitochondria, tolcapone stimulated state 2 complex II-linked respiration and both compounds inhibited state 3 respiration of complex IV. Mitochondrial uncoupling was confirmed for both compounds by stimulation of complex I-linked respiration in the presence of oligomycin. Inhibition of complex I, II and IV for tolcapone and of complex I and IV for entacapone was directly demonstrated in disrupted mouse liver mitochondria. In HepaRG cells, tolcapone-induced inhibition of mitochondrial respiration was associated with increased lactate and ROS production and hepatocyte necrosis. In conclusion, both compounds uncouple oxidative phosphorylation and inhibit mitochondrial enzyme complexes. Tolcapone is a more potent mitochondrial toxicant than entacapone. Mitochondrial toxicity is a possible mechanism for tolcapone-associated hepatotoxicity.

Copyright © 2017 Elsevier Ltd. All rights reserved. Keywords: Apoptosis, COMT inhibitors, Electron transport chain, Necrosis, Uncoupling, Human liver HepaRG cells Bioblast editor: Kandolf G O2k-Network Lab: CH Basel Kraehenbuehl S


Labels: MiParea: Respiration, Pharmacology;toxicology 


Organism: Human, Mouse  Tissue;cell: Liver, Other cell lines  Preparation: Permeabilized cells, Isolated mitochondria  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase 

Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, CIV, ROX  HRR: Oxygraph-2k 

2017-08