Skalska 2008 Biochim Biophys Acta

From Bioblast
Publications in the MiPMap
Skalska J, Piwonska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, Zielinska J, Bednarczyk P, Dolowy K, Wilczynski GM, Szewczyk A, Kunz WS (2008) A novel potassium channel in skeletal muscle mitochondria. Biochim Biophys Acta 1777:651-9.

Β» PMID: 18515063 Open Access

Skalska J, Piwonska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, Zielinska J, Bednarczyk P, Dolowy K, Wilczynski GM, Szewczyk A, Kunz WS (2008) Biochim Biophys Acta

Abstract: In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury. β€’ Keywords: Mitochondria, Potassium channel, Skeletal muscle

β€’ O2k-Network Lab: PL Warsaw Szewczyk A, PL Warsaw Bednarczyk P


Labels: MiParea: Respiration 


Organism: Rat  Tissue;cell: Skeletal muscle  Preparation: Isolated mitochondria 

Regulation: Calcium  Coupling state: LEAK 

HRR: Oxygraph-2k 



Cookies help us deliver our services. By using our services, you agree to our use of cookies.