VO2max

From Bioblast


high-resolution terminology - matching measurements at high-resolution


VO2max

Description

Maximum oxygen consumption, VO2max, is and index of cardiorespiratory fitness, measured by spiroergometry on human and animal organisms capable of controlled physical exercise performance on a treadmill or cycle ergometer. VO2max is the maximum respiration of an organism, expressed as the volume of O2 at STPD consumed per unit of time per individual object [mL.min-1.x-1]. If normalized per body mass of the individual object, M [kg.x-1], mass specific maximum oxygen consumption, VO2max/M, is expressed in units [mL.min-1.kg-1].

Abbreviation: VO2max; VO2max/M

Reference: Oxygen flux

Events on mitObesity


MitoFit-to-aging.jpg
Healthy reference population     Body mass excess         BFE         BME cutoffs         BMI         H         M         VO2max         mitObesity drugs



Communicated by Gnaiger Erich 2020-02-22
in: Catastrophe XXX XXX-mass Carol on BME and mitObesity of X-mass Carol

VO2max and body mass excess

Conversion to SI units

VO2max/M [mL O2∙min-1∙kg-1]: The conventional spiroergometric units are based on volume of O2, considering that external respiration involves ventilation of a volume of gas. However, the actual volume of air ventilated is different, taking into account the fraction of oxygen in humid air at the actual temperature, versus the volume of oxygen gas at STPD.
  • JO2max/M [µmol O2∙s-1∙kg-1]: For connecting spiroergometry to cell metabolism, the volume of oxygen gas, VO2(g) [mL], has to be converted into an amount of dissolved oxygen, nO2(aq) [µmol].
  • For conversion from VO2max(M units [[mL.min-1.kg-1]] to SI units of amount of oxygen consumed, VO2max/M is multiplied by the conversion factor of 0.744 to obtain JO2max/M [µmol O2∙s-1.x-1].


1 mL O2∙min-1∙kg-1 (at STPD) ∙ [1000 µmol∙(22.392 mL)-1] ∙ [1 min∙(60 s)-1] = 0.744 µmol O2∙s-1∙kg-1


References: VO2max

Questions.jpg


Click to expand or collaps
- >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Sort in ascending/descending order by a click on one of the small symbols in squares below.
Default sorting: chronological. Empty fields appear first in ascending order. 
 YearReferenceOrganismTissue;cellStressDiseases
Magnan 2024 Eur J Preventive Cardiol2024Magnan PO, Besnier F, Dupuy E, Gagnon C, Vincent T, Mohammadi H, Klai C, Martin N, Juneau M, Gagnon D, Gauthier C, Vrinceanu T, Nigam A, Gayda M, Bherer L (2024) Exploration of the relationships between the ventilatory, cardiac and peripheral determinants of cardiopulmonary fitness and cognitive functions in older adults with cardiovascular risk factors. Eur J Preventive Cardiol 31, Suppl 1: zwae175.249, https://doi.org/10.1093/eurjpc/zwae175.249.HumanAging;senescence
Martino 2024 Am J Physiol Endocrinol Metab2024Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN (2024) Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice. Am J Physiol Endocrinol Metab 326:E515-27. https://doi.org/10.1152/ajpendo.00258.2023MouseSkeletal muscle
Liver
Gonzalez-Fernandez 2023 BMC Pediatr2023González-Fernández FT, Delgado-García G, Coll JS, Silva AF, Nobari H, Clemente FM (2023) Relationship between cognitive functioning and physical fitness in regard to age and sex. . BMC Pediatr 23:204. https://doi.org/10.1186/s12887-023-04028-8HumanAging;senescence
Obesity
Calabria 2023 Biomedicines2023Calabria E, Muollo V, Cavedon V, Capovin T, Saccenti L, Passarotti F, Ghiotto L, Milanese C, Gelati M, Rudi D, Salvagno GL, Lippi G, Tam E, Schena F, Pogliaghi S (2023) Type 2 diabetes related mitochondrial defects in peripheral mononucleated blood cells from overweight postmenopausal women. https://doi.org/10.3390/biomedicines11010121HumanBlood cellsDiabetes
Hadanny 2022 Sports Med Open2022Hadanny A, Hachmo Y, Rozali D, Catalogna M, Yaakobi E, Sova M, Gattegno H, Abu Hamed R, Lang E, Polak N, Friedman M, Finci S, Zemel Y, Bechor Y, Gal N, Efrati S (2022) Effects of hyperbaric oxygen therapy on mitochondrial respiration and physical performance in middle-aged athletes: a blinded, randomized controlled trial.HumanSkeletal muscle
Pühringer 2021 High Alt Med Biol2021Pühringer R, Gatterer H, Berger M, Said M, Faulhaber M, Burtscher M (2021) Does moderate altitude affect VO2max in acclimatized mountain guides? High Alt Med Biol doi: 10.1089/ham.2021.0081HumanHypoxia
Mendham 2021 Diabetologia2021Mendham AE, Goedecke JH, Zeng Y, Larsen S, George C, Hauksson J, Fortuin-de Smidt MC, Chibalin AV, Olsson T, Chorell E (2021) Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 64:1642-59.HumanSkeletal muscleObesity
Olivo 2021 Sci Rep2021Olivo G, Nilsson J, Garzón B, Lebedev A, Wåhlin A, Tarassova O, Ekblom MM, Lövdén M (2021) Higher VO2max is associated with thicker cortex and lower grey matter blood flow in older adults. Sci Rep 11:16724. https://doi.org/10.1038/s41598-021-96138-5HumanAging;senescence
Murthy 2020 JAMA Cardiol2020Murthy VL, Xia R, Baldridge AS, Carnethon MR, Sidney S, Bouchard C, Sarzynski MA, Lima JAC, Lewis GD, Shah SJ, Fornage M, Shah RV (2020) Polygenic risk, fitness, and obesity in the Coronary Artery Risk Development In Young Adults (CARDIA) study. JAMA Cardiol 5:40-8. doi: 10.1001/jamacardio.2019.5220HumanCardiovascular
Obesity
Chambers 2020 J Appl Physiol (1985)2020Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 128:368–78.HumanSkeletal muscle
Fat
Aging;senescence
Caspi 2020 J Am Heart Assoc2020Caspi T, Straw S, Cheng C, Garnham JO, Scragg JL, Smith J, Koshy AO, Levelt E, Sukumar P, Gierula J, Beech DJ, Kearney MT, Cubbon RM, Wheatcroft SB, Witte KK, Roberts LD, Bowen TS (2020) Unique transcriptome signature distinguishes patients with heart failure with myopathy. J Am Heart Assoc 9:e017091. https://doi.org/10.1161/JAHA.120.017091HumanHeart
Skeletal muscle
Cardiovascular
Myopathy
Hoffmann 2020 J Clin Endocrinol Metab2020Hoffmann C, Schneeweiss P, Randrianarisoa E, Schnauder G, Kappler L, Machann J, Schick F, Fritsche A, Heni M, Birkenfeld A, Niess AM, Häring HU, Weigert C, Moller A (2020) Response of mitochondrial respiration in adipose tissue and muscle to 8 weeks of endurance exercise in obese subjects. J Clin Endocrinol Metab 105:dgaa571.HumanSkeletal muscle
Fat
Obesity
Hunter 2019 J Appl Physiol2019Hunter GR, Moellering DR, Windham ST, Mathis SL, Bamman MM, Fisher G (2019) Relationship between V̇o2peak, cycle economy, and mitochondrial respiration in untrained/trained. J Appl Physiol 127:1562-8.HumanSkeletal muscle
Cardinale 2019 Front Physiol2019Cardinale DA, Larsen FJ, Lännerström J, Manselin T, Södergård O, Mijwel S, Lindholm P, Ekblom B, Boushel R (2019) Influence of hyperoxic-supplemented high-intensity interval training on hemotological and muscle mitochondrial adaptations in trained cyclists. Front Physiol 10:730.HumanSkeletal muscle
Chroeis 2019 Eur J Sport Sci2019Chrøis KM, Dohlmann TL, Søgaard D, Hansen CV, Dela F, Helge JW, Larsen S (2019) Mitochondrial adaptations to high intensity interval training in older females and males. Eur J Sport Sci 20:135-45.HumanSkeletal muscleAging;senescence
Hunter 2019 J Appl Physiol (1985)2019Hunter GR, Moellering DR, Windham ST, Mathis SL, Bamman MM, Fisher G (2019) Relationship between VO2max, cycle economy & mitochondrial respiration in untrained/trained. J Appl Physiol (1985) 127:1562-68.HumanSkeletal muscle
Robach 2018 Scand J Med Sci Sports2018Robach P, Hansen J, Pichon A, Meinild Lundby AK, Dandanell S, Slettaløkken Falch G, Hammarström D, Pesta DH, Siebenmann C, Keiser S, Kérivel P, Whist JE, Rønnestad BR, Lundby C (2018) Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports 28:1636-52.HumanSkeletal muscleHypoxia
Gonzalez-Freire 2018 Aging Cell2018Gonzalez-Freire M, Scalzo P, D'Agostino J, Moore ZA, Diaz-Ruiz A, Fabbri E, Zane A, Chen B, Becker KG, Lehrmann E, Zukley L, Chia CW, Tanaka T, Coen PM, Bernier M, de Cabo R, Ferrucci L (2018) Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: the Baltimore longitudinal study of aging. Aging Cell 17.HumanSkeletal muscleAging;senescence
Cardinale 2018 Front Physiol2018Cardinale DA, Larsen FJ, Schiffer TA, Morales-Alamo D, Ekblom B, Calbet JAL, Holmberg HC, Boushel R (2018) Superior intrinsic mitochondrial respiration in women than in men. Front Physiol 9:1133.HumanSkeletal muscle
Distefano 2018 J Cachexia Sarcopenia Muscle2018Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, Coen PM (2018) Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle 9:279-94.HumanSkeletal muscleAging;senescence
Strasser 2018 Front Biosci (Landmark Ed)2018Strasser B, Burtscher M (2018) Survival of the fittest: VO2max, a key predictor of longevity? Front Biosci (Landmark Ed) 23:1505-16. https://doi.org/10.2741/4657HumanHeart
Skeletal muscle
Lung;gill
Aging;senescence
Allard 2018 J Clin Endocrinol Metab2018Allard NAE, Schirris TJJ, Verheggen RJ, Russel FGM, Rodenburg RJ, Smeitink JAM, Thompson PD, Hopman MTE, Timmers S (2018) Statins affect skeletal muscle performance: evidence for disturbances in energy metabolism. J Clin Endocrinol Metab 103:75-84.HumanSkeletal muscleMyopathy
Lund 2018 Acta Physiol (Oxf)2018Lund MT, Larsen S, Hansen M, Courraud J, Floyd AK, Støckel M, Helge JW, Dela F (2018) Mitochondrial respiratory capacity remains stable despite a comprehensive and sustained increase in insulin sensitivity in obese patients undergoing gastric bypass surgery. Acta Physiol (Oxf) 223:e13032.HumanSkeletal muscleDiabetes
Obesity
Mondal 2017 J Clin Diagn Res2017Mondal H, Mishra SP (2017) Effect of BMI, body fat percentage and fat free mass on maximal oxygen consumption in healthy young adults. J Clin Diagn Res 11:CC17-20.HumanObesity
Wu 2017 Sci Rep2017Wu LH, Chang SC, Fu TC, Huang CH, Wang JS (2017) High-intensity interval training improves mitochondrial function and suppresses thrombin generation in platelets undergoing hypoxic stress. Sci Rep 7:4191.HumanBlood cells
Platelet
Hypoxia
Goedecke 2017 JMIR Res Protoc2017Goedecke JH, Mendham AE, Clamp L, Nono Nankam PA, Fortuin-de Smidt MC, Phiri L, Micklesfield LK, Keswell D, Woudberg NJ, Lecour S, Alhamud A, Kaba M, Lutomia FM, van Jaarsveld PJ, de Villiers A, Kahn SE, Chorell E, Hauksson J, Olsson T (2017) An exercise intervention to unravel the mechanisms underlying insulin resistance in a cohort of black South African women: Protocol for a randomized controlled trial. JMIR Res Protoc 03/10/2017:9098.HumanSkeletal muscle
Fat
Diabetes
Obesity
Kenny 2017 Diabetologia2017Kenny HC, Rudwill F, Breen L, Salanova M, Blottner D, Heise T, Heer M, Blanc S, O'Gorman DJ (2017) Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance. Diabetologia 60:1491-501.HumanSkeletal muscleDiabetes
Greggio 2017 Cell Metab2017Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Alonso SC, Ofori E, Auwerx J, Cantó C, Amati F (2017) Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab 25:301-11.HumanSkeletal muscle
Nabben 2017 Am J Physiol Regul Integr Comp Physiol2017Nabben M, Schmitz JP, Ciapaite J, Le Clercq CM, van Riel NA, Haak HR, Nicolay K, de Coo IF, Smeets HJ, Praet SF, van Loon LJ, Prompers JJ (2017) Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in mitochondrial myopathy patients. Am J Physiol Regul Integr Comp Physiol 312:689-701.HumanSkeletal muscleMyopathy
Asping 2017 Eur J Clin Pharmacol2017Asping M, Stride N, Søgaard D, Dohlmann TL, Helge JW, Dela F, Larsen S (2017) The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: the LIFESTAT study. Eur J Clin Pharmacol 73:679-87.Human
Lalia 2017 Aging (Albany NY)2017Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, Lanza IR (2017) Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 9:1096-1129.HumanSkeletal muscleAging;senescence
Gemmink 2016 Diabetologia2016Gemmink A, Bosma M, Kuijpers HJ, Hoeks J, Schaart G, van Zandvoort MA, Schrauwen P, Hesselink MK (2016) Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans. Diabetologia 59:1040-8.HumanSkeletal muscleDiabetes
Spendiff 2016 J Physiol2016Spendiff S, Vuda M, Gouspillou G, Aare S, Perez A, Morais JA, Jagoe RT, Filion ME, Glicksman R, Kapchinsky S, MacMillan NJ, Pion CH, Aubertin-Leheudre M, Hettwer S, Correa JA, Taivassalo T, Hepple RT (2016) Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol 594:7361-79.Human
Mouse
Skeletal musclePermeability transitionAging;senescence
Myopathy
Salvadego 2016 J Appl Physiol (1985)2016Salvadego D, Keramidas ME, Brocca L, Domenis R, Mavelli I, Rittweger J, Eiken O, Mekjavic IB, Grassi B (2016) Separate and combined effects of a 10-d exposure to hypoxia and inactivity on oxidative function in vivo and mitochondrial respiration ex vivo in humans. J Appl Physiol (1985) 121:154-63.HumanSkeletal muscleCryopreservation
Hypoxia
Johnson 2016 Diabetes2016Johnson ML, Distelmaier K, Lanza IR, Irving BA, Robinson MM, Konopka AR, Shulman GI, Nair KS (2016) Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults. Diabetes 65:74-84.HumanSkeletal muscleDiabetes
Obesity
Gifford 2016 J Physiol2016Gifford JR, Garten RS, Nelson AD, Trinity JD, Layec G, Witman MA, Weavil JC, Mangum T, Hart C, Etheredge C, Jessop J, Bledsoe A, Morgan DE, Wray DW, Richardson RS (2016) Symmorphosis and skeletal muscle VO2max: in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. https://doi.org/10.1113/JP271229HumanSkeletal muscle
Tam 2016 Eur J Appl Physiol2016Tam E, Bruseghini P, Calabria E, Sacco LD, Doria C, Grassi B, Pietrangelo T, Pogliaghi S, Reggiani C, Salvadego D, Schena F, Toniolo L, Verratti V, Vernillo G, Capelli C (2016) Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol 116:129-44.HumanSkeletal muscle
Lalia 2016 J Clin Endocrinol Metab2016Lalia AZ, Dasari S, Johnson ML, Robinson MM, Konopka AR, Distelmaier K, Port JD, Glavin MT, Esponda RR, Nair KS, Lanza IR (2016) Predictors of whole-body insulin sensitivity across ages and adiposity in adult humans. J Clin Endocrinol Metab 101:626-34.HumanSkeletal muscleAging;senescence
Diabetes
Obesity
Irving 2015 J Clin Endocrinol Metab2015Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS (2015) Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab 100:1654-63.HumanSkeletal muscle
Tompuri 2015 Clin Physiol Funct Imaging2015Tompuri T, Lintu N, Savonen K, Laitinen T, Laaksonen D, Jääskeläinen J, Lakka TA (2015) Measures of cardiorespiratory fitness in relation to measures of body size and composition among children. Clin Physiol Funct Imaging 35:469-77.HumanObesity
Coen 2015 Diabetes2015Coen PM, Menshikova EV, Distefano G, Zheng D, Tanner CJ, Standley RA, Helbling NL, Dubis GS, Ritov VB, Xie H, Desimone ME, Smith SR, Stefanovic-Racic M, Toledo FG, Houmard JA, Goodpaster BH (2015) Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64:3737-50.HumanSkeletal muscleObesity
Van de Weijer 2015 Diabetes2015van de Weijer T, Phielix E, Bilet L, Williams EG, Ropelle ER, Bierwagen A, Livingstone R, Nowotny P, Sparks LM, Paglialunga S, Szendroedi J, Havekes B, Moullan N, Pirinen E, Hwang JH, Schrauwen-Hinderling VB, Hesselink MK, Auwerx J, Roden M, Schrauwen P (2015) Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64:1193-201.HumanSkeletal muscleDiabetes
Ludzki 2015 Diabetes2015Ludzki A, Paglialunga S, Smith BK, Herbst EA, Allison MK, Heigenhauser GJ, Neufer PD, Holloway GP (2015) Rapid repression of ADP transport by palmitoyl-CoA is attenuated by exercise training in humans; a potential mechanism to decrease oxidative stress and improve skeletal muscle insulin signaling. Diabetes 64:2769-79.Human
Mouse
Skeletal muscleDiabetes
Gnaiger 2015 Scand J Med Sci Sports2015Gnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and caucasians in the arctic winter. https://doi.org/10.1111/sms.12612HumanSkeletal muscleTemperature
Boushel 2015 Scand J Med Sci Sports2015Boushel R, Gnaiger E, Larsen FJ, Helge JW, Gonzalez-Alonso J, Ara I, Munch-Andersen T, van Hall G, Søndergaard H, Saltin B, Calbet JAL (2015) Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity. Scand J Med Sci Sports 25 (Suppl 4):135–43.HumanSkeletal muscle
Dube 2014 Am J Physiol Endocrinol Metab2014Dube JJ, Coen PM, DiStefano G, Chacon AC, Helbling NL, Desimone ME, Stafanovic-Racic M, Hames KC, Despines AA, Toledo FG, Goodpaster BH (2014) Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. Am J Physiol Endocrinol Metab 307:E1117-24.HumanSkeletal muscleDiabetes
Gram 2014 Exp Gerontol2014Gram M, Vigelsoe A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F (2014) Two weeks of one-leg immobilization decreases skeletal muscle 2 respiratory capacity equally in young and elderly men. Exp Gerontol 58C:269-78.HumanSkeletal muscleAging;senescence
Broskey 2014 J Clin Endocrinol Metab2014Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, Hans D, Gremion G, Kreis R, Boesch C, Canto AC, Amati F (2014) Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab 99:1852-61.HumanSkeletal muscleCryopreservationAging;senescence
Ludzki 2014 Thesis2014Ludzki AC (2014) Palmitoyl-CoA inhibition of mitochondrial ADP sensitivity is attenuated by exercise training in human skeletal muscle. Master's Thesis 1-86.Human
Mouse
Skeletal muscle
Setty 2013 Int J Med Sci Public Health2013Setty P, Padmanabha BV, Doddamani BR (2013) Correlation between obesity and cardio respiratory fitness. Int J Med Sci Public Health 2:300-4.HumanObesity
Dagan 2013 Nutr J2013Dagan SS, Segev S, Novikov I, Dankner R (2013) Waist circumference vs body mass index in association with cardiorespiratory fitness in healthy men and women: a cross sectional analysis of 403 subjects. Nutr J 12:12.Human
Dlugosz 2013 J Exp Biol2013Dlugosz EM, Chappell MA, Meek TH, Szafranska PA, Zub K, Konarzewski M, Jones JH, Bicudo JE, Nespolo RF, Careau V, Garland T Jr (2013) Phylogenetic analysis of mammalian maximal oxygen consumption during exercise. J Exp Biol 216:4712-21.
Afolabi 2013 Int J Sci Engin Res2013Afolabi BO, Akanbi OG (2013) Effects of body mass index on aerobic power (VO2max) and energy expenditure (EE): a case of manual load lifting in agro-processing. Int J Sci Engin Res 4:1718-21.Human
Loe 2013 PLOS ONE2013Loe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLOS ONE 8:e64319.Human
Phielix 2012 Diabetes2012Phielix E, Meex R, Ouwens DM, Sparks LM, Hoeks J, Schaart G, Moonen-Kornips E, Hesselink MK, Schrauwen P (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472-8.HumanSkeletal muscleMitochondrial diseaseDiabetes
Pesta 2011 Am J Physiol Regul Integr Comp Physiol2011Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87.HumanSkeletal muscleHypoxiaObesity
Chomentowski 2011 J Clin Endocrinol Metab2011Chomentowski P, Coen PM, Radiková Z, Goodpaster BH, Toledo FG (2011) Skeletal muscle mitochondria in insulin resistance: Differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 96: 494-503.HumanSkeletal muscleDiabetes
Obesity
Timmers 2011 Cell Metab2011Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612-22.HumanSkeletal muscleObesity
Pribis 2010 Nutrients2010Pribis P, Burtnack CA, McKenzie SO, Thayer J (2010) Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2:1075-85.HumanObesity
So 2010 J Sports Sci Med2010So WY, Choi DH (2010) Differences in physical fitness and cardiovascular function depend on BMI in Korean men. J Sports Sci Med 9:239-44.Human
Raboel 2009 Diabetes Obes Metab2009Raboel R, Hojberg PM, Almdal T, Boushel RC, Haugaard SB, Madsbad S, Dela F (2009) Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 11:355-60.HumanSkeletal muscleMitochondrial diseaseDiabetes
Kodama 2009 JAMA2009Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301:2024-35.HumanCardiovascular
Obesity
Nakhostin-Roohi 2008 J Sports Med Phys Fitness2008Nakhostin-Roohi B, Niknam Z (2008) BMI, fat percentage and VO2max in college female staff. J Sports Med Phys Fitness 48:211-6.Human
Daussin 2008 Am J Physiol Regul Integr Comp Physiol2008Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264-72.HumanSkeletal muscle
Bakkman 2007 ActaPhysiol2007Bakkman L, Sahlin K, Holmberg HC, Tonkonogi M (2007) Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxford) 190:243–51.HumanSkeletal muscleOxidative stress;RONS
Rabinovich 2007 Eur Respir J2007Rabinovich RA, Bastos R, Ardite E, Llinàs L, Orozco-Levi M, Gea J, Vilaró J, Barberà JA, Rodríguez-Roisin R, Fernández-Checa JC, Roca J (2007) Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J 29:643-50.HumanSkeletal muscleOxidative stress;RONS
Boushel 2007 Diabetologia2007Boushel RC, Gnaiger E, Schjerling P, Skovbro M, Kraunsoee R, Dela F (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790-6.HumanSkeletal muscleDiabetes
Obesity
Brien 2007 Can J Public Health2007Brien SE, Katzmarzyk PT, Craig CL, Gauvin L (2007) Physical activity, cardiorespiratory fitness and body mass index as predictors of substantial weight gain and obesity: the Canadian physical activity longitudinal study. Can J Public Health 98:121-4..HumanObesity
Mogensen 2006 J Physiol2006Mogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.HumanSkeletal muscle
Dufour 2006 J Appl Physiol (1985)2006Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Flück M, Hoppeler H, Billat V, Mettauer B, Richard R, Lonsdorfer J (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol (1985) 100:1238-48.HumanHypoxia
Ponsot 2006 J Appl Physiol (1985)2006Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 100:1249-57.HumanSkeletal muscleHypoxia
Weibel 2005 J Exp Biol2005Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635-44.Skeletal muscle
Garnier 2005 FASEB J2005Garnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43-52.HumanSkeletal muscle
Weibel 2004 Respir Physiol Neurobiol2004Weibel ER, Bacigalupe LD, Schmitt B, Hoppeler H (2004) Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir Physiol Neurobiol 140:115-32.Skeletal muscle
N'Guessan 2004 Mol Cell Biochem2004N'Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B (2004) Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256-257:267-80.HumanSkeletal muscle
Kayser 2003 Eur J Appl Physiol2003Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90:411–9. https://doi.org/10.1007/s00421-003-0902-7HumanSkeletal muscle
Nervous system
Hypoxia
Rasmussen 2003 Eur J Physiol2003Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.HumanSkeletal muscleAging;senescence
Zoll 2002 J Physiol2002Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Surrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191-200.HumanSkeletal muscle
Echaniz-Laguna 2002 Ann Neurol2002Echaniz-Laguna A, Zoll J, Ribera F, Tranchant C, Warter JM, Lonsdorfer J, Lampert E (2002) Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann Neurol 52:623-7.HumanSkeletal muscleNeurodegenerative
Rasmussen 2001 Am J Physiol Endocrinol Metab2001Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280:E301-7.HumanSkeletal muscle
Mettauer 2001 J Am Coll Cardiol2001Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.HumanSkeletal muscleCardiovascular
Wei 1999 JAMA1999Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr, Blair SN (1999) Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 282:1547-53.HumanCardiovascular
Diabetes
Obesity
Favier 1995 J Appl Physiol (1985)1995Favier R, Spielvogel H, Desplanches D, Ferretti G, Kayser B, Grünenfelder A, Leuenberger M, Tüscher L, Caceres E, Hoppeler H (1995) Training in hypoxia vs. training in normoxia in high-altitude natives. J Appl Physiol (1985) 78:2286-93. doi: 10.1152/jappl.1995.78.6.2286HumanSkeletal muscleHypoxiaCardiovascular
Di Prampero 1990 Respir Physiol1990Di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. https://doi.org/10.1016/0034-5687(90)90075-aHumanHypoxia


References: BME and VO2max

» VO2max
 Reference
Bakkman 2007 ActaPhysiolBakkman L, Sahlin K, Holmberg HC, Tonkonogi M (2007) Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxford) 190:243–51.
Boushel 2007 DiabetologiaBoushel RC, Gnaiger E, Schjerling P, Skovbro M, Kraunsoee R, Dela F (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790-6.
Chambers 2020 J Appl Physiol (1985)Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 128:368–78.
Daussin 2008 Am J Physiol Regul Integr Comp PhysiolDaussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264-72.
Garnier 2005 FASEB JGarnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43-52.
Gnaiger 2015 Scand J Med Sci SportsGnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and caucasians in the arctic winter. https://doi.org/10.1111/sms.12612
Gnaiger 2019 MiP2019
Erich Gnaiger
OXPHOS capacity in human muscle tissue and body mass excess – the MitoEAGLE mission towards an integrative database (Version 6; 2020-01-12).
Loe 2013 PLOS ONELoe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLOS ONE 8:e64319.
Mettauer 2001 J Am Coll CardiolMettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.
Mogensen 2006 J PhysiolMogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.
N'Guessan 2004 Mol Cell BiochemN'Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B (2004) Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256-257:267-80.
Pesta 2011 Am J Physiol Regul Integr Comp PhysiolPesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87.
Ponsot 2006 J Appl Physiol (1985)Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 100:1249-57.
Pribis 2010 NutrientsPribis P, Burtnack CA, McKenzie SO, Thayer J (2010) Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2:1075-85.
Raboel 2009 Diabetes Obes MetabRaboel R, Hojberg PM, Almdal T, Boushel RC, Haugaard SB, Madsbad S, Dela F (2009) Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 11:355-60.
Rasmussen 2001 Am J Physiol Endocrinol MetabRasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280:E301-7.
Rasmussen 2003 Eur J PhysiolRasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.
Zoll 2002 J PhysiolZoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Surrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191-200.

MitoPedia: BME and mitObesity

» Body mass excess and mitObesity | BME and mitObesity news | Summary |

TermAbbreviationDescription
BME cutoff pointsBME cutoffObesity is defined as a disease associated with an excess of body fat with respect to a healthy reference condition. Cutoff points for body mass excess, BME cutoff points, define the critical values for underweight (-0.1 and -0.2), overweight (0.2), and various degrees of obesity (0.4, 0.6, 0.8, and above). BME cutoffs are calibrated by crossover-points of BME with established BMI cutoffs.
Body fat excessBFEIn the healthy reference population (HRP), there is zero body fat excess, BFE, and the fraction of excess body fat in the HRP is expressed - by definition - relative to the reference body mass, M°, at any given height. Importantly, body fat excess, BFE, and body mass excess, BME, are linearly related, which is not the case for the body mass index, BMI.
Body massm [kg]; M [kg·x-1]The body mass M is the mass (kilogram [kg]) of an individual (object) [x] and is expressed in units [kg/x]. Whereas the body weight changes as a function of gravitational force (you are weightless at zero gravity; your floating weight in water is different from your weight in air), your mass is independent of gravitational force, and it is the same in air and water.
Body mass excessBMEThe body mass excess, BME, is an index of obesity and as such BME is a lifestyle metric. The BME is a measure of the extent to which your actual body mass, M [kg/x], deviates from M° [kg/x], which is the reference body mass [kg] per individual [x] without excess body fat in the healthy reference population, HRP. A balanced BME is BME° = 0.0 with a band width of -0.1 towards underweight and +0.2 towards overweight. The BME is linearly related to the body fat excess.
Body mass indexBMIThe body mass index, BMI, is the ratio of body mass to height squared (BMI=M·H-2), recommended by the WHO as a general indicator of underweight (BMI<18.5 kg·m-2), overweight (BMI>25 kg·m-2) and obesity (BMI>30 kg·m-2). Keys et al (1972; see 2014) emphasized that 'the prime criterion must be the relative independence of the index from height'. It is exactly the dependence of the BMI on height - from children to adults, women to men, Caucasians to Asians -, which requires adjustments of BMI-cutoff points. This deficiency is resolved by the body mass excess relative to the healthy reference population.
ComorbidityComorbidities are common in obesogenic lifestyle-induced early aging. These are preventable, non-communicable diseases with strong associations to obesity. In many studies, cause and effect in the sequence of onset of comorbidities remain elusive. Chronic degenerative diseases are commonly obesity-induced. The search for the link between obesity and the etiology of diverse preventable diseases lead to the hypothesis, that mitochondrial dysfunction is the common mechanism, summarized in the term 'mitObesity'.
Healthy reference populationHRPA healthy reference population, HRP, establishes the baseline for the relation between body mass and height in healthy people of zero underweight or overweight, providing a reference for evaluation of deviations towards underweight or overweight and obesity. The WHO Child Growth Standards (WHO-CGS) on height and body mass refer to healthy girls and boys from Brazil, Ghana, India, Norway, Oman and the USA. The Committee on Biological Handbooks compiled data on height and body mass of healthy males from infancy to old age (USA), published before emergence of the fast-food and soft-drink epidemic. Four allometric phases are distinguished with distinct allometric exponents. At heights above 1.26 m/x the allometric exponent is 2.9, equal in women and men, and significantly different from the exponent of 2.0 implicated in the body mass index, BMI [kg/m2].
Height of humansh [m]; H [m·x-1]The height of humans, h, is given in SI units in meters [m]. Humans are countable objects, and the symbol and unit of the number of objects is N [x]. The average height of N objects is, H = h/N [m/x], where h is the heights of all N objects measured on top of each other. Therefore, the height per human has the unit [m·x-1] (compare body mass [kg·x-1]). Without further identifyer, H is considered as the standing height of a human, measured without shoes, hair ornaments and heavy outer garments.
Lengthl [m]Length l is an SI base quantity with SI base unit meter m. Quantities derived from length are area A [m2] and volume V [m3]. Length is an extensive quantity, increasing additively with the number of objects. The term 'height' h is used for length in cases of vertical position (see height of humans). Length of height per object, LUX [m·x-1] is length per unit-entity UX, in contrast to lentgth of a system, which may contain one or many entities, such as the length of a pipeline assembled from a number NX of individual pipes. Length is a quantity linked to direct sensory, practical experience, as reflected in terms related to length: long/short (height: tall/small). Terms such as 'long/short distance' are then used by analogy in the context of the more abstract quantity time (long/short duration).
MitObesity drugsBioactive mitObesity compounds are drugs and nutraceuticals with more or less reproducible beneficial effects in the treatment of diverse preventable degenerative diseases implicated in comorbidities linked to obesity, characterized by common mechanisms of action targeting mitochondria.
ObesityObesity is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent body fat excess associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with body mass excess up to a critical stage of obesogenic lifestyle-induced sarcopenia, when loss of muscle mass results in further deterioration of physical performance particularly at older age.
VO2maxVO2max; VO2max/MMaximum oxygen consumption, VO2max, is and index of cardiorespiratory fitness, measured by spiroergometry on human and animal organisms capable of controlled physical exercise performance on a treadmill or cycle ergometer. VO2max is the maximum respiration of an organism, expressed as the volume of O2 at STPD consumed per unit of time per individual object [mL.min-1.x-1]. If normalized per body mass of the individual object, M [kg.x-1], mass specific maximum oxygen consumption, VO2max/M, is expressed in units [mL.min-1.kg-1].


MitoPedia methods: Respirometry 


Labels:






MitoPedia:BME 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.