Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Ara 2011 Int J Obes"

From Bioblast
Line 1: Line 1:
{{Publication
{{Publication
|title=Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW (2011) Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans.. Int J Obes 35: 99-108..  
|title=Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW (2011) Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes 35: 99-108.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/20548301 PMID: 20548301]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/20548301 PMID: 20548301]
|authors=Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW
|authors=Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW
|year=2011
|year=2011
|journal=Int J Obes  
|journal=Int J Obes
|abstract=AIM/HYPOTHESIS:
|abstract=AIM/HYPOTHESIS: The aim of this study was to investigate mitochondrial function, fibre-type distribution and substrate oxidation during exercise in arm and leg muscles in male postobese (PO), obese (O) and age- and body mass index (BMI)-matched control (C) subjects. The hypothesis of the study was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.
The aim of this study was to investigate mitochondrial function, fibre-type distribution and substrate oxidation during exercise in arm and leg muscles in male postobese (PO), obese (O) and age- and body mass index (BMI)-matched control (C) subjects. The hypothesis of the study was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.
 
METHODS:
METHODS: Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O2 flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.
Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.
 
RESULTS:
RESULTS: During the graded exercise tests, peak fat oxidation during leg cycling and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O, and plasma leptin was higher in O than in PO and C.
During the graded exercise tests, peak fat oxidation during leg cycling and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O, and plasma leptin was higher in O than in PO and C.
 
CONCLUSIONS:
CONCLUSIONS: In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations, but not with differences in fibre-type composition, mitochondrial function or muscle enzyme levels compared with Cs. In PO subjects, the changes in fat oxidation are preserved during leg, but not during arm, exercise.
In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations, but not with differences in fibre-type composition, mitochondrial function or muscle enzyme levels compared with Cs. In PO subjects, the changes in fat oxidation are preserved during leg, but not during arm, exercise.
|keywords=lipid oxidation; weight loss; adiponectin; physical activity
|keywords=lipid oxidation; weight loss; adiponectin; physical activity  
|mipnetlab=DK Copenhagen Dela F
}}
}}
{{Labeling
{{Labeling

Revision as of 21:32, 7 March 2012

Publications in the MiPMap
Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW (2011) Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes 35: 99-108.

» PMID: 20548301

Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-González JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW (2011) Int J Obes

Abstract: AIM/HYPOTHESIS: The aim of this study was to investigate mitochondrial function, fibre-type distribution and substrate oxidation during exercise in arm and leg muscles in male postobese (PO), obese (O) and age- and body mass index (BMI)-matched control (C) subjects. The hypothesis of the study was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.

METHODS: Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O2 flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.

RESULTS: During the graded exercise tests, peak fat oxidation during leg cycling and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O, and plasma leptin was higher in O than in PO and C.

CONCLUSIONS: In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations, but not with differences in fibre-type composition, mitochondrial function or muscle enzyme levels compared with Cs. In PO subjects, the changes in fat oxidation are preserved during leg, but not during arm, exercise. Keywords: lipid oxidation; weight loss; adiponectin; physical activity

O2k-Network Lab: DK Copenhagen Dela F


Labels:

Stress:z in prep"z in prep" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: z edited"z edited" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property., Human  Tissue;cell: z edited"z edited" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: z edited"z edited" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: z in prep"z in prep" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: z in prep"z in prep" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: z edited"z edited" is not in the list (Oxygraph-2k, TIP2k, O2k-Fluorometer, pH, NO, TPP, Ca, O2k-Spectrophotometer, O2k-Manual, O2k-Protocol, ...) of allowed values for the "Instrument and method" property., Oxygraph-2k