De Carvalho 2017 Toxicol Research

From Bioblast
Revision as of 13:39, 26 June 2019 by Krumschnabel Gerhard (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
de Carvalho NR, Rodrigues NR, Macedo GE, Boligon AA, de Campos MM, Posser T, Cunha FAB, Coutinho HD, Klamt F, Bristot IJ, Merritt TJS, Franco JL (2017) Eugenia uniflora leaves essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol Research 6:526-34 .

Β» PMID: 30090521 Open access

de Carvalho NR, Rodrigues NR, Macedo GE, Boligon AA, de Campos MM, Posser T, Cunha FAB, Coutinho HD, Klamt F, Bristot IJ, Merritt TJS, Franco JL (2017) Toxicol Research

Abstract: Eugenia uniflora L(Myrtaceae family) has demonstrated several properties of human interest, including insecticide potential, due to its pro-oxidant properties. These properties likely result from the effects on its mitochondria, but the mechanism of this action is unclear. The aim of this work was to evaluate the mitochondrial bioenergetics function in Drosophila melanogaster exposed to E. uniflora leaf essential oil. For this, we used a high-resolution respirometry (HRR) protocol. We found that E. uniflora promoted a collapse of the mitochondrial transmembrane potential (ΔΨm). In addition the essential oil was able to promote the disruption of respiration coupled to oxidative phosphorylation (OXPHOS) and inhibit the respiratory electron transfer-pathway (ET-pathway) established with an uncoupler. In addition, exposure led to decreases of respiratory control ratio (RCR), bioenergetics capacity and OXPHOS coupling efficiency, and induced changes in the substrate control ratio. Altogether, our results suggested that E. uniflora impairs the mitochondrial function/viability and promotes the uncoupling of OXPHOS, which appears to play an important role in the cellular bioenergetics failure induced by essential oil in D. melanogaster. β€’ Keywords: Mitochondrial dysfunction, Oxidative phosphorylation, Essential oil, Bioenergetics failure, Insecticide, Natural product β€’ Bioblast editor: Kandolf G β€’ O2k-Network Lab: BR Porto Alegre Klamt F, BR Sao Gabriel Franco JL


Labels: MiParea: Respiration, Pharmacology;toxicology 


Organism: Drosophila 

Preparation: Isolated mitochondria 

Regulation: mt-Membrane potential  Coupling state: LEAK, OXPHOS, ET  Pathway: F, N, S, NS, ROX  HRR: Oxygraph-2k, O2k-Fluorometer 

2017-08, Safranine-O 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.