Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 1993 Hypoxia"

From Bioblast
Line 10: Line 10:
{{Labeling
{{Labeling
|area=Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style
|area=Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style
|organism=Human
|injuries=Ischemia-reperfusion
|taxonomic group=Annelids
|organism=Human, Annelids
|tissues=Skeletal muscle
|tissues=Skeletal muscle
|preparations=Intact organism
|preparations=Intact organism
|injuries=Ischemia-reperfusion
|topics=Aerobic glycolysis, ADP, ATP, Coupling efficiency;uncoupling, pH, Phosphate
|topics=Aerobic glycolysis, ADP, ATP, Coupling efficiency;uncoupling, pH, Phosphate
|couplingstates=ROUTINE
|couplingstates=ROUTINE

Revision as of 08:33, 9 November 2016

Publications in the MiPMap
Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving Hypoxia: Mechanisms of Control and Adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109.

Β» Bioblast pdf

Gnaiger E (1993) CRC Press

Abstract:


β€’ O2k-Network Lab: AT Innsbruck Gnaiger E


Labels: MiParea: Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style 

Stress:Ischemia-reperfusion  Organism: Human, Annelids  Tissue;cell: Skeletal muscle  Preparation: Intact organism 

Regulation: Aerobic glycolysis, ADP, ATP, Coupling efficiency;uncoupling, pH, Phosphate  Coupling state: ROUTINE 

HRR: Theory 

CaloRespirometry