Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 1993 Hypoxia"

From Bioblast
Line 8: Line 8:
|discipline=Mitochondrial Physiology
|discipline=Mitochondrial Physiology
}}
}}
::::* Referred to in [[Gnaiger 2014 MitoPathways]], Chapter 1.
{{Labeling
{{Labeling
|area=Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style
|area=Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style
Line 17: Line 20:
|couplingstates=ROUTINE
|couplingstates=ROUTINE
|instruments=Theory
|instruments=Theory
|additional=CaloRespirometry
|additional=CaloRespirometry, LEAK-respiration, Efficiency
|discipline=Mitochondrial Physiology
}}
}}
* Referred to in [[Gnaiger 2014 MitoPathways]], Chapter 1.

Revision as of 12:48, 17 May 2020

Publications in the MiPMap
Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving hypoxia: Mechanisms of control and adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109.

Β» Bioblast pdf

Gnaiger E (1993) CRC Press

Abstract:


β€’ O2k-Network Lab: AT Innsbruck Gnaiger E



Labels: MiParea: Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style 

Stress:Ischemia-reperfusion  Organism: Human, Annelids  Tissue;cell: Skeletal muscle  Preparation: Intact organism 

Regulation: Aerobic glycolysis, ADP, ATP, Coupling efficiency;uncoupling, pH, Phosphate  Coupling state: ROUTINE 

HRR: Theory 

CaloRespirometry, LEAK-respiration, Efficiency