Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 2018 EBEC2018"

From Bioblast
(3 intermediate revisions by the same user not shown)
Line 10: Line 10:
}}
}}
== Affiliations ==
== Affiliations ==
::::#D. Swarovski Research Lab, Dept Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck
::::# D. Swarovski Research Lab, Dept Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck
::::#Oroboros Instruments
::::# Oroboros Instruments
::::::Innsbruck, Austria. - [email protected]
:::::: Innsbruck, Austria. - [email protected]


== References ==
== References ==
::::# Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research, Bodmin. Biochim Biophys Acta Bioenergetics 1807:1507-38.
:::# Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research, Bodmin. Biochim Biophys Acta Bioenergetics 1807:1507-38. - [[Mitchell 2011 Biochim Biophys Acta |Ā»Bioblast linkĀ«]]
::::# Garlid KD, Beavis AD, Ratkje SK (1989) On the nature of ion leaks in energy-transducing membranes. Biochim Biophys Acta 976:109-20. - [[Garlid 1989 Biochim Biophys Acta |Ā»Bioblast linkĀ«]]
:::# Garlid KD, Beavis AD, Ratkje SK (1989) On the nature of ion leaks in energy-transducing membranes. Biochim Biophys Acta 976:109-20. - [[Garlid 1989 Biochim Biophys Acta |Ā»Bioblast linkĀ«]]
::::# Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLOS Comput Biol 1(4):e36. - [[Beard 2005 PLOS Comput Biol |Ā»Bioblast linkĀ«]]
:::# Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLOS Comput Biol 1(4):e36. - [[Beard 2005 PLOS Comput Biol |Ā»Bioblast linkĀ«]]
::::# Einstein A (1905) Ɯber die von der molekularkinetischen Theorie der WƤrme geforderte Bewegung von in ruhenden FlĆ¼ssigkeiten suspendierten Teilchen. Ann Physik 4, XVII:549-60. - [[Einstein 1905 Ann Physik 549 |Ā»Bioblast linkĀ«]]
:::# Einstein A (1905) Ɯber die von der molekularkinetischen Theorie der WƤrme geforderte Bewegung von in ruhenden FlĆ¼ssigkeiten suspendierten Teilchen. Ann Physik 4, XVII:549-60. - [[Einstein 1905 Ann Physik 549 |Ā»Bioblast linkĀ«]]
::::# Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - [[Gnaiger_1993_Pure_Appl_Chem |Ā»Bioblast linkĀ«]] Ā 
:::# Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - [[Gnaiger_1993_Pure_Appl_Chem |Ā»Bioblast linkĀ«]] Ā 
::::# Gnaiger E (1989) Mitochondrial respiratory control: energetics, kinetics and efficiency. In: Energy transformations in cells and organisms. Wieser W, Gnaiger E (eds), Thieme, Stuttgart:6-17. - [[Gnaiger_1989_Energy_Transformations |Ā»Bioblast linkĀ«]]
:::# Gnaiger E (1989) Mitochondrial respiratory control: energetics, kinetics and efficiency. In: Energy transformations in cells and organisms. Wieser W, Gnaiger E (eds), Thieme, Stuttgart:6-17. - [[Gnaiger_1989_Energy_Transformations |Ā»Bioblast linkĀ«]]


{{Labeling
{{Labeling
Line 27: Line 27:
|couplingstates=LEAK
|couplingstates=LEAK
|event=Oral
|event=Oral
|additional=MitoEAGLE
}}
}}

Revision as of 11:13, 3 November 2018

The protonmotive force under pressure: an isomorphic analysis.

Link: EBEC2018

Gnaiger E (2018)

Event: EBEC2018 Budapest HU

ā€˜.. the sum of the electrical pressure difference and the osmotic pressure difference (i.e. the electrochemical potential difference) of protonsā€™ [1] links to non-ohmic flux-force relationships between proton leak and protonmotive force (pmf). This is experimentally established, has direct consequences on mitochondrial physiology, but is theoretically little understood [2,3]. Here I distinguish pressure from potential differences (diffusion: Ī”Ī¼H+ or Ī”dFH+; electric: Ī”ĪØ or Ī”elF), to explain non-ohmic flux-force relationships on the basis of four thermodynamic theorems. (1) Einsteinā€™s diffusion equation [4] explains the concentration gradient (dc/dz) in Fickā€™s law as the product of chemical potential gradient (the vector force and resistance determine the velocity, v, of a particle) and local concentration, c. This yields the chemical pressure gradient (vanā€™t Hoff): ddĪ /dz = RTāˆ™dc/dz. Flux [5] is the product of v and c; c varies with force. Therefore, flux-force relationships are non-linear. (2) The pmf is not a vector force; the gradient is replaced by a pressure difference, and local concentration by a distribution function or free activity, Ī±. Flux is a function of Ī± and force, Jd = bāˆ™Ī±āˆ™Ī”dFB = -bāˆ™Ī”dĪ B [6]. (3) At Ī”elF = -Ī”dFH+, the diffusion pressure of protons, Ī”dĪ H+ = RTāˆ™Ī”cH+ [Pa=Jāˆ™m-3] is balanced by electric pressure, maintained by counterions of H+. Diffusional and electric pressures are isomorphic, additive, and yield protonmotive pressure (pmp). (4) The dependence of proton leak on pmf varies with Ī”elF versus Ī”dFH+, in agreement with experimental evidence. The flux-force relationship is concave at high mitochondrial volume fractions, but near-exponential at small mt-matrix volume ratios. Linear flux-pmp relationships imply a near-exponential dependence of the proton leak on the pmf.


ā€¢ Bioblast editor: Gnaiger E ā€¢ O2k-Network Lab: AT Innsbruck Gnaiger E


Affiliations

  1. D. Swarovski Research Lab, Dept Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck
  2. Oroboros Instruments
Innsbruck, Austria. - [email protected]

References

  1. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research, Bodmin. Biochim Biophys Acta Bioenergetics 1807:1507-38. - Ā»Bioblast linkĀ«
  2. Garlid KD, Beavis AD, Ratkje SK (1989) On the nature of ion leaks in energy-transducing membranes. Biochim Biophys Acta 976:109-20. - Ā»Bioblast linkĀ«
  3. Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLOS Comput Biol 1(4):e36. - Ā»Bioblast linkĀ«
  4. Einstein A (1905) Ɯber die von der molekularkinetischen Theorie der WƤrme geforderte Bewegung von in ruhenden FlĆ¼ssigkeiten suspendierten Teilchen. Ann Physik 4, XVII:549-60. - Ā»Bioblast linkĀ«
  5. Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - Ā»Bioblast linkĀ«
  6. Gnaiger E (1989) Mitochondrial respiratory control: energetics, kinetics and efficiency. In: Energy transformations in cells and organisms. Wieser W, Gnaiger E (eds), Thieme, Stuttgart:6-17. - Ā»Bioblast linkĀ«


Labels: MiParea: Respiration 




Regulation: Flux control, Ion;substrate transport, mt-Membrane potential  Coupling state: LEAK 


Event: Oral  MitoEAGLE