Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Guerrero 2010 Mol Cell Biochem

From Bioblast
Revision as of 11:00, 14 October 2010 by Biljana (talk | contribs)
Publications in the MiPMap
Guerrero K, Monge C, Brückner A, Puurand U, Kadaja L, Käämbre T, Seppet E, Saks V (2009) Study of possible interactions of tubulin, microtubular network, and STOP protein with mitochondria in muscle cells. Mol. Cell Biochem.337: 239-249.

» PMID: 19888554

Guerrero K, Monge C, Brueckner A, Puurand U, Kadaja L, Kaeaembre T, Seppet E, Saks V (2009) Mol. Cell. Biochem.

Abstract: We studied possible connections of tubulin, microtubular system, and microtubular network stabilizing STOP protein with mitochondria in rat and mouse cardiac and skeletal muscles by confocal microscopy and oxygraphy. Intracellular localization and content of tubulin was found to be muscle type-specific, with high amounts in oxidative muscles, and much lower in glycolytic skeletal muscle. STOP protein localization and content in muscle cells was also muscle type-specific. In isolated heart mitochondria, addition of 1 μM tubulin heterodimer increased apparent Km for ADP significantly. Dissociation of microtubular system into free tubulin by colchicine treatment only slightly decreased initially high apparent Km for ADP in permeabilized cells, and diffusely distributed free tubulin stayed inside the cells, obviously connected to the intracellular structures. To identify the genes that are specific for oxidative muscle, we developed and applied a method of kindred DNA. The results of sequencing and bioinformatic analysis of isolated cDNA pool common for heart and m. soleus showed that in adult mice the β-tubulin gene is expressed predominantly in oxidative muscle cells. It is concluded that whereas dimeric tubulin may play a significant role in regulation of mitochondrial outer membrane permeability in the cells in vivo, its organization into microtubular network has a minor significance on that process. Keywords: Cytoskeleton, Mitochondria, Oxidative phosphorylation, Tubulin, Microtubular Network, STOP protein, Heart, Skeletal muscles


Labels:

Stress:Genetic Defect; Knockdown; Overexpression"Genetic Defect; Knockdown; Overexpression" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Mouse, Rat  Tissue;cell: Cardiac Muscle"Cardiac Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k