Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Isolated system

From Bioblast
Revision as of 11:36, 3 January 2019 by Gnaiger Erich (talk | contribs)


high-resolution terminology - matching measurements at high-resolution


Isolated system

Description

The boundaries of isolated systems are impermeable for all forms of energy and matter. Changes of isolated systems have exclusively internal origins, e.g., internal entropy production, diS/dt, internal formation of chemical species i which is produced in a reaction r, dini/dt = drni/dt. In isolated systems some internal terms are restricted to zero by various conservation laws which rule out the production or destruction of the respective quantity.


Reference: »System

Template:Keywords System

Internal change of internal-energy

IUPAC defines the internal energy change, ΔU = q+w [1]. This is restricted to closed systems. To clarify that internal (subscript i) and external (subscript e) energy changes, diU and deU, respectively, refer to U as "internal energy", it may be helpful to write "internal-energy" for U [2].
The First Law of Thermodynamics states that in all systems the internal change of internal-energy is always zero, diU/dt = 0 [2].


References

  1. Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor HL (2008) Quantities, Units and Symbols in Physical Chemistry. IUPAC Green Book 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge. - »Bioblast link«
  2. Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - »Bioblast link«

MitoPedia concepts: Ergodynamics 


Labels:





HRR: Theory