Karavyraki 2022 MitoFit

From Bioblast
Revision as of 07:41, 28 June 2022 by Gnaiger Erich (talk | contribs)
Jump to navigation Jump to search

Bioblast2022 banner.jpg


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Karavyraki 2022 MitoFit

Publications in the MiPMap
Karavyraki M, Gnaiger E, Porter RK (2022) A comparison of bioenergetics in human tongue pre-cancerous dysplastic oral keratinocytes and squamous cancer cells. https://doi.org/10.26124/mitofit:2022-0022

» MitoFit Preprints 2022.22.

MitoFit pdf

A comparison of bioenergetics in human tongue pre-cancerous dysplastic oral keratinocytes and squamous cancer cells

Karavyraki Marilena, Gnaiger Erich, Porter Richard K (2022-06-02) MitoFit Prep

Abstract: Porter 2022 Abstract Bioblast: In an endeavour to understand the metabolic phenotype behind oral squamous cell carcinomas, we characterised the bioenergetic profile of a human tongue derived cancer cell line (SCC-4 cells) and compared this profile to a pre-cancerous dysplastic oral keratinocyte (DOK) cell line also derived from human tongue. The human SCC-4 cancer cells had greater mitochondrial densitydensity but lower mitochondrial O2 flow per cell than DOK cells. The lower oxygen consumption rate in SCC-4 cells can be partially explained by lower NADH-related enzymatic activity and lower mitochondrial Complex I activity when compared to pre-cancerous DOK cells. In addition, SCC-4 cells have greater extracellular acidification rate (an index of glycolytic flux) when compared to DOK cells. In addition, treatment with recombinant human IL-6 (rhIL-6), known to drive anoikis resistance in SCC-4 cells but not DOK cells, impairs oxygen consumption in SCC-4 but not DOK cells, without affecting mitochondrial density. We conclude that SCC-4 cells have a less oxidative phenotype compared to DOK cells and that IL-6 attenuates mitochondrial function in SCC-4 cells while increasing glycolytic flux.


O2k-Network Lab: AT Innsbruck Oroboros, IE Dublin Porter RK

Karavyraki Marilena, ORCID.png Gnaiger Erich, ORCID.png Porter Richard K

Data availability

All data will be available.

Support

Marie Curie Grant TRACT 721906 H2020-MCSA-ITN 2016; COST Action CA15203 MitoEAGLE (2016-2021). We thank Rafael Moreno-Sanchez for a constructive review of our manuscript.


Labels: MiParea: Respiration  Pathology: Cancer 

Organism: Human 

Preparation: Permeabilized cells  Enzyme: Complex I, Marker enzyme, TCA cycle and matrix dehydrogenases  Regulation: Aerobic glycolysis  Coupling state: LEAK, ROUTINE, ET  Pathway: S, ROX  HRR: Oxygraph-2k 

Bioblast 2022, Crabtree effect