Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Larsen 2009 Diabetologia"

From Bioblast
Line 6: Line 6:
|journal=Diabetologia
|journal=Diabetologia
|abstract=Aim/hypothesis: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls.Methods: Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O<sub>2</sub> flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes, age- and BMI-matched obese controls, and age-matched lean controls.Results: Fat oxidation was similar in the groups during either arm or leg exercise. During leg exercise at higher intensities, but not during arm exercise, carbohydrate oxidation was lower in patients with type 2 diabetes compared with the other groups. In patients with type 2 diabetes, ADP-stimulated state 3 respiration per mg muscle with parallel electron input from complex I+II was lower in ''m. vastus lateralis'' compared with obese and lean controls, whereas no differences between groups were present in ''m. deltoideus''. A higher percentage of type IIX fibres was seen in ''m. vastus lateralis'' in patients with type 2 diabetes compared with obese and lean controls, whereas no difference was found in the deltoid muscle.Conclusions/interpretation: This study demonstrates similar O<sub>2</sub> flux capacity, fibre type distribution and carbohydrate oxidation in arm muscle in the groups despite the presence of attenuated values in leg muscle in patients with type 2 diabetes compared with obese and lean controls.
|abstract=Aim/hypothesis: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls.Methods: Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O<sub>2</sub> flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes, age- and BMI-matched obese controls, and age-matched lean controls.Results: Fat oxidation was similar in the groups during either arm or leg exercise. During leg exercise at higher intensities, but not during arm exercise, carbohydrate oxidation was lower in patients with type 2 diabetes compared with the other groups. In patients with type 2 diabetes, ADP-stimulated state 3 respiration per mg muscle with parallel electron input from complex I+II was lower in ''m. vastus lateralis'' compared with obese and lean controls, whereas no differences between groups were present in ''m. deltoideus''. A higher percentage of type IIX fibres was seen in ''m. vastus lateralis'' in patients with type 2 diabetes compared with obese and lean controls, whereas no difference was found in the deltoid muscle.Conclusions/interpretation: This study demonstrates similar O<sub>2</sub> flux capacity, fibre type distribution and carbohydrate oxidation in arm muscle in the groups despite the presence of attenuated values in leg muscle in patients with type 2 diabetes compared with obese and lean controls.
|mipnetlab=DK_Copenhagen_Boushel R, DK_Copenhagen_Dela F,
|mipnetlab=DK_Copenhagen_Boushel R, DK_Copenhagen_Dela F
|discipline=Biomedicine
|discipline=Biomedicine
}}
}}
Line 13: Line 13:
|injuries=Mitochondrial Disease; Degenerative Disease and Defect
|injuries=Mitochondrial Disease; Degenerative Disease and Defect
|organism=Human
|organism=Human
|tissues=Skeletal Muscle
|tissues=Skeletal muscle
|preparations=Permeabilized Tissue
|preparations=Permeabilized tissue
|enzymes=Complex I, Complex II; Succinate Dehydrogenase
|enzymes=Complex I, Complex II; Succinate Dehydrogenase
|kinetics=ADP; Pi, Reduced Substrate; Cytochrome c
|kinetics=ADP; Pi, Reduced Substrate; Cytochrome c

Revision as of 01:04, 5 April 2012

Publications in the MiPMap
Larsen S, Ara I, RabΓΈl R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52: 1400-1408.

Β» PMID: 19396425

Larsen S, Ara I, Rabol R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Diabetologia

Abstract: Aim/hypothesis: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls.Methods: Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O2 flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes, age- and BMI-matched obese controls, and age-matched lean controls.Results: Fat oxidation was similar in the groups during either arm or leg exercise. During leg exercise at higher intensities, but not during arm exercise, carbohydrate oxidation was lower in patients with type 2 diabetes compared with the other groups. In patients with type 2 diabetes, ADP-stimulated state 3 respiration per mg muscle with parallel electron input from complex I+II was lower in m. vastus lateralis compared with obese and lean controls, whereas no differences between groups were present in m. deltoideus. A higher percentage of type IIX fibres was seen in m. vastus lateralis in patients with type 2 diabetes compared with obese and lean controls, whereas no difference was found in the deltoid muscle.Conclusions/interpretation: This study demonstrates similar O2 flux capacity, fibre type distribution and carbohydrate oxidation in arm muscle in the groups despite the presence of attenuated values in leg muscle in patients with type 2 diabetes compared with obese and lean controls.


β€’ O2k-Network Lab: DK_Copenhagen_Boushel R, DK_Copenhagen_Dela F


Labels:

Stress:Mitochondrial Disease; Degenerative Disease and Defect"Mitochondrial Disease; Degenerative Disease and Defect" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue  Enzyme: Complex I, Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Redox State"Redox State" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k