Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Menna-Barreto 2009 Free Radic Biol Med

From Bioblast
Revision as of 13:55, 18 October 2010 by Biljana (talk | contribs) (Created page with "{{Publication |title=Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects on Trypanosoma cruzi of novel synthetic naphthoqui...")
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radical Biol. Med. 47: 644-653.

Β» PMID: 19501647

Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) Free Radical Biol. Med.

Abstract: Despite ongoing efforts, the current treatment for Chagas disease is still unsatisfactory, mainly because of the severe side effects and variable efficacy of the available nitroheterocycles. Our group has been assaying natural quinones isolated from Brazilian flora, and their derivatives, as alternative chemotherapeutic agents against Trypanosoma cruzi. From C-allyl lawsone three naphthofuranquinones were synthesized, which were active against trypomastigotes and epimastigotes. Here, we further investigated the activity and the mechanisms of action of these quinones. They exhibited powerful effects on intracellular amastigotes, presenting low toxicity to the host cells. Ultrastructural analyses of treated epimastigotes and trypomastigotes indicated a potent effect of the three naphthofuranquinones on the parasite mitochondrion, which appeared drastically swollen and with a washed-out matrix profile. Fluorescence-activated cell sorting analysis of rhodamine 123-stained T. cruzi showed that the three naphthofuranquinones caused a potent dose-dependent collapse of the mitochondrial membrane potential, especially in the epimastigote form. Naphthofuranquinones also decreased specifically mitochondrial complex I-III activity in both epimastigotes and trypomastigotes, parallel to a reduction in succinate-induced oxygen consumption. Mitochondrial hydrogen peroxide formation was also increased in epimastigotes after treatment with the naphthofuranquinones. Our results indicate that the trypanocidal action of the naphthofuranquinones is associated with mitochondrial dysfunction, leading to increased reactive oxygen species generation and parasite death.


Labels:


Organism: Plant"Plant" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property., Bacteria"Bacteria" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property. 


Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k