Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Mitochondrial membrane potential"

From Bioblast
Line 1: Line 1:
{{MitoPedia
{{MitoPedia
|abbr=mtMP, Δ''ι''<sub>p<sup>+</sup></sub>, Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub> [V]
|abbr=mtMP, Δ''ι''<sub>p<sup>+</sup></sub>, Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub> [V]
|description=The '''mitochondrial membrane potential''', mtMP or Δ''ι''<sub>p<sup>+</sup></sub> = Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub>, is the electric part of the protonmotive [[force]], Δp = Δ<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub>.
|description=The '''mitochondrial membrane potential''' difference, mtMP or Δ''ι''<sub>p<sup>+</sup></sub> = Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub>, is the electric part of the protonmotive [[force]], Δp = Δ<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub>.


:::: Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub> = Δ<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub> - Δ<sub>d</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub>
:::: Δ<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub> = Δ<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub> - Δ<sub>d</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub>

Revision as of 19:37, 10 July 2022


high-resolution terminology - matching measurements at high-resolution


Mitochondrial membrane potential

Description

The mitochondrial membrane potential difference, mtMP or Διp+ = ΔelFep+, is the electric part of the protonmotive force, Δp = ΔmFeH+.

ΔelFep+ = ΔmFeH+ - ΔdFeH+
Διp+ = Δp - Δ”H+·(zH+·F)-1

Διp+ is the potential difference across the mitochondrial inner membrane (mtIM), expressed in the electric unit of volt [V]. Electric force of the mitochondrial membrane potential is the electric energy change per ‘motive’ charge or per charge moved across the transmembrane potential difference, with the number of ‘motive’ charges expressed in the unit coulomb [C].

Abbreviation: mtMP, Διp+, ΔelFep+ [V]

Reference: Mitchell 1961 Nature, Gnaiger 2020 BEC MitoPathways

Communicated by Gnaiger E 2012-10-05, edited 2016-02-06, 2017-09-05, 2022-07-05.
The chemical part of the protonmotive force, ΔdFeH+ = Δ”H+·(zH+·F)-1, stems from the difference of pH across the mt-membrane. It contains a factor that bridges the gap between the electric force [J/C] and the chemical force [J/mol]. This factor is the Faraday constant, F, for conversion between electric force expressed in joules per coulomb or Volt [V=J/C] and chemical force with the unit joules per mole or Jol [Jol=J/mol],
F = 96.4853 kJol/V = 96,485.3 C/mol

Template NextGen-O2k.jpg


MitoPedia O2k and high-resolution respirometry: O2k-Open Support 



Different methods for measurements of mt-membrane potential

mt-Membrane potential can either be measured in the O2k-FluoRespirometer fluorometrically by using the fluorophores TMRM, Safranin, or Rhodamine 123 or potentiometrically with the O2k-TPP+ ISE-Module electrode by using the ion reporter TPP+. All mentioned ion indicator molecules inhibit respiration, which makes it essential to test the optimum concentration.

High-resolution respirometry and mt-membrane potential

The O2k-MultiSensor system provides a potentiometric and a fluorometric module for measurement of the mt-membrane potential.
» O2k-Manual TPP: MiPNet15.03 O2k-MultiSensor-ISE
» TPP: O2k-technical_support
» MiPNet20.13 Safranin mt-membranepotential
» TMRM: O2k-technical_support

Calculations

  • The calculation used to calculate the mt-membrane potential values are provided here complying with Oroboros transparency policy, see the following page: Safranin

Excel analysis templates

  • More advanced Excel analysis templates for the respective SUIT protocols to calculate the relative mt-membrane potential values are available on this page.
  • The calculations used in the excel analysis template are provided complying with Oroboros transparency policy: [1]

SUITbrowser question: Mitochondrial membrane potential

Several SUIT protocols are focused on the measurement of mt-membrane potential by potentiometric and fluorometric techniques.
Use the SUITbrowser to find the best protocol to answer this and other research questions.


O2k-Publications in the MiPMap
Sort in ascending/descending order by a click on one of the small symbols in squares below.
Default sorting: chronological. Empty fields appear first in ascending order. 
 YearReferenceOrganismTissue;cell
Ravasz 2024 Sci Rep2024Ravasz D, Bui D, Nazarian S, Pallag G, Karnok N, Roberts J, Marzullo BP, Tennant DA, Greenwood B, Kitayev A, Hill C, KomlĂłdi T, Doerrier C, Cunatova K, Fernandez-Vizarra E, Gnaiger E, Kiebish Michael A, Raska A, Kolev K, Czumbel B, Narain NR, Seyfried TN, Chinopoulos C (2024) Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia. Sci Rep 14:1729. https://doi.org/10.1038/s41598-024-51365-4MouseHeart
Liver
Donnelly 2024 Redox Biol2024Donnelly C, KomlĂłdi T, Cecatto C, Cardoso LHD, Compagnion A-C, Matera A, Tavernari D, Campiche O, Paolicelli RC, Zanou N, Kayser B, Gnaiger E, Place N (2024) Functional hypoxia reduces mitochondrial calcium uptake. Redox Biol 71:103037. https://doi.org/10.1016/j.redox.2024.103037Human
Mouse
Heart
Skeletal muscle
Som 2023 Am J Physiol Cell Physiol2023Som R, Fink BD, Yu L, Sivitz WI (2023) Oxaloacetate regulates complex II respiration in brown fat: dependence on UCP1 expression. Am J Physiol Cell Physiol 324:C1236-48. doi: 10.1152/ajpcell.00565.2022MouseFat
Krause 2023 J Transl Med2023Krause J, Nickel A, Madsen A, Aitken-Buck HM, Stoter AMS, Schrapers J, Ojeda F, Geiger K, Kern M, Kohlhaas M, Bertero E, Hofmockel P, HĂŒbner F, Assum I, Heinig M, MĂŒller C, Hansen A, Krause T, Park DD, Just S, AĂŻssi D, Börnigen D, Lindner D, Friedrich N, Alhussini K, Bening C, Schnabel RB, Karakas M, Iacoviello L, Salomaa V, Linneberg A, Tunstall-Pedoe H, Kuulasmaa K, Kirchhof P, Blankenberg S, Christ T, Eschenhagen T, Lamberts RR, Maack C, Stenzig J, Zeller T (2023) An arrhythmogenic metabolite in atrial fibrillation. https://doi.org/10.1186/s12967-023-04420-zHumanHeart
Donnelly 2023 MitoFit2023Donnelly C, Komlódi T, Cecatto C, Cardoso LHD, Compagnion AC, Matera A, Tavernari D, Zanou N, Kayser B, Gnaiger E, Place N (2023) Functional hypoxia reduces mitochondrial calcium uptake. MitoFit Preprints 2023.2. https://doi.org/10.26124/mitofit:2023-0002 — 2024-11-17 published in Redox Biol.Human
Mouse
Skeletal muscle
Heart
Nervous system
Other cell lines
Dabrowska 2023 Int J Mol Sci2023Dabrowska A, Zajac M, Bednarczyk P, Lukasiak A (2023) Effect of quercetin on mitoBKCa channel and mitochondrial function in human bronchial epithelial cells exposed to particulate matter. Int J Mol Sci 24:638. https://doi.org/10.3390/ijms24010638HumanLung;gill
Endothelial;epithelial;mesothelial cell
Bouitbir 2022 Int J Mol Sci2022Bouitbir J, Panajatovic MV, KrĂ€henbĂŒhl S (2022) Mitochondrial toxicity associated with imatinib and sorafenib in isolated rat heart fibers and the cardiomyoblast H9c2 cell line. Int J Mol Sci 23:2282. https://doi.org/10.3390/ijms23042282RatHeart
Pallag 2022 Int J Mol Sci2022Pallag G, Nazarian S, Ravasz D, Bui D, KomlĂłdi T, Doerrier C, Gnaiger E, Seyfried TN, Chinopoulos C (2022) Proline oxidation supports mitochondrial ATP production when Complex I is inhibited. https://doi.org/10.3390/ijms23095111MouseLiver
Kidney
Tomar 2022 Biochim Biophys Acta Bioenerg2022Tomar N, Zhang X, Kandel SM, Sadri S, Yang C, Liang M, Audi SH, Cowley AW Jr, Dash RK (2022) Substrate-dependent differential regulation of mitochondrial bioenergetics in the heart and kidney cortex and outer medulla. https://doi.org/10.1016/j.bbabio.2021.148518RatHeart
Kidney
Ceja-Galicia 2022 Antioxidants (Basel)2022Ceja-Galicia ZA, GarcĂ­a-Arroyo FE, Aparicio-Trejo OE, El-Hafidi M, Gonzaga-SĂĄnchez G, LeĂłn-Contreras JC, HernĂĄndez-Pando R, Guevara-Cruz M, Tovar AR, Rojas-Morales P, Aranda-Rivera AK, SĂĄnchez-Lozada LG, Tapia E, Pedraza-Chaverri J (2022) Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: association with the improvement of renal mitochondrial ÎČ-oxidation and lipid metabolism in kidney and liver. https://doi.org/10.3390/antiox11112195RatKidney
Fink 2022 FASEB Bioadv2022Fink BD, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI (2022) Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue. FASEB Bioadv 4:197-210. https://doi.org/10.1096/fba.2021-00137Fat
Komlodi 2022 BEC2022Komlódi T, Tretter L (2022) The protonmotive force – not merely membrane potential. Bioenerg Commun 2022.16. https://doi.org/10.26124/bec:2022-0016
Juhaszova 2021 Function (Oxf)2021Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ (2021) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-"uniporter" function: I. Characterization of ion fluxes. Function (Oxf) 3(2):zqab065. doi: 10.1093/function/zqab065
Fink 2021 Pharmacol Res Perspect2021Fink BD, Yu L, Coppey L, Obrosov A, Shevalye H, Kerns RJ, Yorek MA, Sivitz WI (2021) Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats. Pharmacol Res Perspect 9:e00701.RatLiver
Schmidt 2021 J Biol Chem2021Schmidt CA, Fisher-Wellman KH, Neufer PD (2021) From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 207:101140. https://doi.org/10.1016/j.jbc.2021.101140
Jasz 2021 J Cell Mol Med2021JĂĄsz DK, SzilĂĄgyi ÁL, Tuboly E, BarĂĄth B, MĂĄrton AR, Varga P, Varga G, Érces D, MohĂĄcsi Á, SzabĂł A, BozĂł R, Gömöri K, Görbe A, Boros M, Hartmann P (2021) Reduction in hypoxia-reoxygenation-induced myocardial mitochondrial damage with exogenous methane. https://doi.org/10.1111/jcmm.16498RatHeart
MiPNet24.08 Safranin Analysis Template2020-05-13
O2k-Protocols
Excel template for safranin data analysis.
MiPNet25.14 TPP Analysis Template2020-##-##
O2k-Protocols
Excel template for TPP data analysis.
Cecatto 2020 Toxicol In Vitro2020Cecatto C, Amaral AU, Roginski AC, Castilho RF, Wajner M (2020) Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Toxicol In Vitro 62:104665.RatSkeletal muscle
Charles 2020 Nanomedicine (Lond)2020Charles C, Cohen-Erez I, Kazaoka B, Melnikov O, Stein DE, Sensenig R, Rapaport H, Orynbayeva Z (2020) Mitochondrial responses to organelle-specific drug delivering nanoparticles composed of polypeptide and peptide complexes. Nanomedicine (Lond) 15:2917-32.HumanEndothelial;epithelial;mesothelial cell
Aparicio-Trejo 2020 Free Radic Biol Med2020Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, Rojas-Morales P, LeĂłn-Contreras JC, MartĂ­nez-Klimova E, HernĂĄndez-Pando R, SĂĄnchez-Lozada LG, Pedraza-Chaverri J (2020) Chronic impairment of mitochondrial bioenergetics and ÎČ-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Radic Biol Med 154:18-32.RatKidney
Gnaiger 2020 BEC MitoPathways2020Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-0002Human
Mouse
Heart
Skeletal muscle
Fibroblast
Lozano 2020 Part Fibre Toxicol2020Lozano O, Silva-Platas C, Chapoy-Villanueva H, PĂ©rez BE, Lees JG, Ramachandra CJA, Contreras-Torres FF, LĂĄzaro-Alfaro A, Luna-Figueroa E, Bernal-RamĂ­rez J, Gordillo-Galeano A, Benitez A, Oropeza-AlmazĂĄn Y, Castillo EC, Koh PL, Hausenloy DJ, Lim SY, GarcĂ­a-Rivas G (2020) Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol 17:15.RatHeart
Wang 2020 J Mol Med (Berl)2020Wang SY, Zhu Siyu, Wu Jian, Zhang Maomao, Xu Yousheng, Xu Wei, Cui Jinjin, Yu Bo, Cao Wei, Liu Jingjin (2020) Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl) 98:245-61.MouseHeart
Dolezelova 2020 PLoS Biol2020DoleĆŸelovĂĄ E, KunzovĂĄ M, Dejung M, Levin M, Panicucci B, Regnault C, Janzen CJ, Barrett MP, Butter F, ZĂ­kovĂĄ A (2020) Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol 18:e3000741.Protists
Oellermann 2020 Sci Rep2020Oellermann M, Hickey AJR, Fitzgibbon QP, Smith G (2020) Thermal sensitivity links to cellular cardiac decline in three spiny lobsters. Sci Rep 10:202.CrustaceansHeart
Smith 2020 J Biol Chem2020Smith CD, Schmidt CA, Lin CT, Fisher-Wellman KH, Neufer PD (2020) Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure. J Biol Chem 295:16207-16.MouseSkeletal muscle
Cecatto 2020 Mitochondrion2020Cecatto C, Amaral AU, Wajner A, Wajner SM, Castilho RF, Wajner M (2020) Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion 50:1-13.RatLiver
Other cell lines
Hassan 2020 MitoFit Preprint Arch2020Hassan Hazirah, Gnaiger Erich, Zakaria Fazaine, Makpol Suzana, Abdul Karim Norwahidah (2020) Alterations in mitochondrial respiratory capacity and membrane potential: a link between mitochondrial dysregulation and autism. https://doi.org/10.26124/mitofit:200003Human
Dilberger 2019 Oxid Med Cell Longev2019Dilberger B, Baumanns S, Schmitt F, Schmiedl T, Hardt M, Wenzel U, Eckert GP (2019) Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxid Med Cell Longev 2019:6840540.Caenorhabditis elegans
Malyala 2019 PLoS Comput Biol2019Malyala S, Zhang Y, Strubbe JO, Bazil JN (2019) Calcium phosphate precipitation inhibits mitochondrial energy metabolism. PLoS Comput Biol 15:e1006719.Guinea pigHeart
Fink 2019 FASEB J2019Fink BD, Yu L, Sivitz WI (2019) Modulation of complex II-energized respiration in muscle, heart, and brown adipose mitochondria by oxaloacetate and complex I electron flow. FASEB J 33:11696-705.MouseHeart
Skeletal muscle
Fat
Shuvo 2019 J Bioenerg Biomembr2019Shuvo SR, Wiens LM, Subramaniam S, Treberg JR, Court DA (2019) Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria. J Bioenerg Biomembr 51:341-54.Fungi
Spinazzi 2019 Proc Natl Acad Sci U S A2019Spinazzi M, Radaelli E, Horré K, Arranz AM, Gounko NV, Agostinis P, Maia TM, Impens F, Morais VA, Lopez-Lluch G, Serneels L, Navas P, De Strooper B (2019) PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci U S A 116:277-86.MouseNervous system
Lau 2019 Comp Biochem Physiol B Biochem Mol Biol2019Lau GY, Milsom WK, Richards JG, Pamenter ME (2019) Heart mitochondria from naked mole-rats (Heterocephalus glaber) are more coupled, but similarly susceptible to anoxia-reoxygenation stress than in laboratory mice (Mus musculus). Comp Biochem Physiol B Biochem Mol Biol 240:110375.Mouse
Other mammals
Heart
Devaux 2019 Front Physiol2019Devaux JBL, Hedges CP, Birch N, Herbert N, Renshaw GMC, Hickey AJR (2019) Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: a strategy to survive acute hypoxic exposure? Front Physiol 9:1941.FishesNervous system
Esselun 2019 Oxid Med Cell Longev2019Esselun C, Bruns B, Hagl S, Grewal R, Eckert GP (2019) Differential effects of silibinin A on mitochondrial function in neuronal PC12 and HepG2 liver cells. Oxid Med Cell Longev 2019:1652609.Human
Rat
Nervous system
Liver
Rojas-Morales 2019 Free Radic Biol Med2019Rojas-Morales P, León-Contreras JC, Aparicio-Trejo OE, Reyes- Ocampo JG, Medina-Campos ON, Jiménez-Osorio AS, Gonzålez-Reyes S, Marquina- Castillo B, Hernåndez-Pando R, Barrera-Oviedo D, Sånchez-Lozada LG, Pedraza-Chaverri J, Tapia E (2019) Fasting reduces oxidative stress, mitochondrial dysfunction and fibrosis induced by renal ischemia-reperfusion injury. Free Radic Biol Med 135:60-67.RatKidney
Hayward 2018 Thesis2018Hayward L (2018) The effect of anoxia on mitochondrial function in a hibernator (Ictidomys tridecemlineatus). Master's Thesis 57.Other mammalsLiver
Fisher-Wellman 2018 Cell Rep2018Fisher-Wellman KH, Davidson MT, Narowski TM, Lin CT, Koves TR, Muoio DM (2018) Mitochondrial diagnostics: A multiplexed assay platform for comprehensive assessment of mitochondrial energy fluxes. Cell Rep 24:3593-606.MouseHeart
Skeletal muscle
Menezes-Filho 2018 Biochim Biophys Acta Bioenerg2018Menezes-Filho SL, Amigo I, Luévano-Martínez LA, Kowaltowski AJ (2018) Fasting promotes functional changes in liver mitochondria. Biochim Biophys Acta Bioenerg 1860:129-35.MouseLiver
McLaughlin 2018 Biochem Biophys Res Commun2018McLaughlin KL, McClung JM, Fisher-Wellman KH (2018) Bioenergetic consequences of compromised mitochondrial DNA repair in the mouse heart. Biochem Biophys Res Commun 504:742-48.MouseHeart
Cecatto 2018 FEBS J2018Cecatto C, Amaral AU, da Silva JC, Wajner A, Schimit MOV, da Silva LHR, Wajner SM, Zanatta A, Castilho RF, Wajner M (2018) Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart. FEBS J 285:1437-55.RatHeart
Other cell lines
Komlodi 2018 J Bioenerg Biomembr2018KomlĂłdi T, Geibl FF, Sassani M, Ambrus A, Tretter L (2018) Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria. J Bioenerg Biomembr 50:355-365Guinea pigHeart
Nervous system
Smirnova 2018 Sci Rep2018Smirnova IA, Ädelroth P, Brzezinski P (2018) Extraction and liposome reconstitution of membrane proteins with their native lipids without the use of detergents. Sci Rep 8:14950.
Nogueira 2017 Free Radic Biol Med2017Nogueira NP, Saraiva FMS, Oliveira MP, Mendonca APM, Inacio JDF, Almeida-Amaral EE, Menna-Barreto RF, Laranja GAT, Lopes Torres EJ, Oliveira MF, Paes MC (2017) Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production. Free Radic Biol Med 108:183-91.Protists
De Carvalho 2017 Toxicol Research2017de Carvalho NR, Rodrigues NR, Macedo GE, Boligon AA, de Campos MM, Posser T, Cunha FAB, Coutinho HD, Klamt F, Bristot IJ, Merritt TJS, Franco JL (2017) Eugenia uniflora leaves essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol Research 6:526-34 .Drosophila
Moon 2016 J Biol Chem2016Moon SH, Mancuso DJ, Sims HF, Liu X, Nguyen AL, Yang K, Guan S, Dilthey BG, Jenkins CM, Weinheimer CJ, Kovacs A, Abendschein D, Gross RW (2016) Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2Îł (iPLA2Îł) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size. J Biol Chem 291:19687-700.MouseHeart
Castellano-Gonzalez 2016 Oncotarget2016Castellano-GonzĂĄlez G, Pichaud N, Ballard JW, Bessede A, Marcal H, Guillemin GJ (2016) Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Oncotarget 7:7426-40HumanNervous system
Kucera 2015 Oxid Med Cell Longev2015Kucera O, Mezera V, Moravcova A, Endlicher R, Lotkova H, Drahota Z, Cervinkova Z (2015) In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxid Med Cell Longev 2015:476180.RatLiver
Gnaiger 2014 MitoPathways2014
O2k-Protocols
Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. Oroboros MiPNet Publications, Innsbruck:80 pp. — see 5th edition: Gnaiger 2020 BEC MitoPathways.
Human
Mouse
Heart
Skeletal muscle
Fibroblast
Glaser 2014 Thesis2014Glaser V (2014) Efeitos da hiperglicemia cronica e seus metabolitos, metilglioxal e produtos terminais de glicacao, na fisiologia e dinamica mitochondrial no sistema nervoso central. PhD Thesis 1-117.RatNervous system
Other cell lines
Casanova 2014 Biochim Biophys Acta2014Casanova E, Baselga-Escudero L, Ribas-Latre A, Arola-Arnal A, Bladé C, Arola L, Salvadó MJ (2014) Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. Biochim Biophys Acta 1837:783-91.RatSkeletal muscle
Other cell lines
Kukat 2014 PLoS Genet2014Kukat A, Dogan SA, Edgar D, Mourier A, Jacoby C, Maiti P, Mauer J, Becker C, Senft K, Wibom R, Kudin AP, Hultenby K, Flögel U, Rosenkranz S, Ricquier D, Kunz WS, Trifunovic A (2014) Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. https://doi.org/10.1371/journal.pgen.1004385MouseHeart
Pham 2014 Am J Physiol2014Pham T, Loiselle D, Power A, Hickey AJ (2014) Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol 307:C499–507.RatHeart
Sarti 2013 Int J Mol Sci2013Sarti P, Magnifico MC, Altieri F, Mastronicola D, Arese M (2013) New evidence for cross talk between melatonin and mitochondria mediated by a circadian-compatible interaction with nitric oxide. Int J Mol Sci 14:11259-76.HumanOther cell lines
Felser 2013 Toxicol Sci2013Felser A, Blum K, Lindinger PW, Bouitbir J, Kraehenbuehl S (2013) Mechanisms of hepatocellular toxicity associated with dronedarone - a comparison to amiodarone. Toxicol Sci 131:480-90.Human
Rat
Liver
Krako 2013 J Alzheimers Dis2013Krako N, Magnifico MC, Arese M, Meli G, Forte E, Lecci A, Manca A, Giuffrù A, Mastronicola D, Sarti P, Cattaneo A (2013) Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer’s disease. J Alzheimers Dis 37:747-58.CHO
Duicu 2013 Can J Physiol Pharmacol2013Duicu OM, Mirica SN, Gheorgheosu DE, Privistirescu AI, Fira-Mladinescu O, Muntean DM (2013) Ageing-induced decrease in cardiac mitochondrial function in healthy rats. Can J Physiol Pharmacol 91:593-600.RatHeart
Dos Santos 2013 J Bioenerg Biomembr2013dos Santos RS, Peçanha FL, da-Silva WS (2013) Functional characterization of an uncoupling protein in goldfish white skeletal muscle. J Bioenerg Biomembr 45:243-51.FishesSkeletal muscle
Volejnikova 2013 FEMS Yeast Res2013VolejnĂ­kovĂĄ A, HlouskovĂĄ J, Sigler K, PichovĂĄ A (2013) Vital mitochondrial functions show profound changes during yeast culture ageing. FEMS Yeast Res 13:7-15.Saccharomyces cerevisiae
Fungi
Leuner 2012 Mol Neurobiol2012Leuner K, Schulz K, SchĂŒtt T, Pantel J, Prvulovic D, Rhein V, Savaskan E, Czech C, Eckert A, MĂŒller WE (2012) Peripheral mitochondrial dysfunction in Alzheimer's disease: focus on lymphocytes. Mol Neurobiol 46:194-204.HumanBlood cells
Lymphocyte
Brown 2012 Am J Physiol Regul Integr Comp Physiol2012Brown JC, Chung DJ, Belgrave KR, Staples JF (2012) Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 302:R15-28.Other mammalsSkeletal muscle
Liver
Bustamante 2012 Alcohol2012Bustamante J, Karadayian AG, Lores-Arnaiz S, Cutrera RA (2012) Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover. Alcohol 46:473-9.MouseNervous system
Kumari 2012 PLoS One2012Kumari S, Mehta SL, Li PA (2012) Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One 7:e39382.MouseNervous system
Other cell lines
Selivanov 2012 PLoS Comput Biol2012Selivanov VA, Cascante M, Friedman M, Schumaker MF, Trucco M, Votyakova TV (2012) Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis. PLoS Comput Biol 8(9):e1002700. doi: 10.1371/journal.pcbi.1002700.RatNervous system
Albertini 2012 Aging (Albany NY)2012Albertini E, KozieƂ R, Duerr A, Neuhaus M, Jansen-Duerr P (2012) Cystathionine beta synthase modulates senescence of human endothelial cells. Aging (Albany NY) 4:664-73.HumanEndothelial;epithelial;mesothelial cell
HUVEC
Brown 2011 Am J Physiol Regul Integr Comp Physiol2011Brown JC, Chung DJ, Belgrave KR, Staples JF (2011) Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 302:15-28.Other mammalsSkeletal muscle
Liver
Selivanov 2011 PLoS Comput Biol2011Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7(3):e1001115. doi: 10.1371/journal.pcbi.1001115.RatNervous system
Chinopoulos 2011 Methods Mol Biol2011Chinopoulos C, Zhang SF, Thomas B, Ten V, Starkov AA (2011) Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue. Methods Mol Biol 793:311-24.RatNervous system
Stankova 2010 Toxicol In Vitro2010Staƈková P, Kučera O, Lotková H, Rouơar T, Endlicher R, Cervinková Z (2010) The toxic effect of thioacetamide on rat liver in vitro. Toxicol In Vitro 24:2097-2103.Liver
Xie 2010 Acta Biochim Pol2010Xie X, Chowdhury SR, Sangle G, Shen GX (2010) Impact of diabetes-associated lipoproteins on oxygen consumption and mitochondrial enzymes in porcine aortic endothelial cells. Acta Biochim Pol 57:393-8.PigEndothelial;epithelial;mesothelial cell
Ziabreva 2010 Glia2010Ziabreva I, Campbell G, Rist J, Zambonin J, Rorbach J, Wydro MM, Lassmann H, Franklin RJ, Mahad D (2010) Injury and differentiation following inhibition of mitochondrial respiratory chain Complex IV in rat oligodendrocytes. Glia 58:1827-37.RatNervous system
Sommer 2010 Eur Respir J2010Sommer N, Pak O, Schörner S, Derfuss T, Krug A, Gnaiger E, Ghofrani HA, Schermuly RT, Huckstorf C, Seeger W, Grimminger F, Weissmann N (2010) Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. https://doi.org/10.1183/09031936.00013809HumanLung;gill
Endothelial;epithelial;mesothelial cell
Dikov 2010 Exp Gerontol2010Dikov D, Aulbach A, Muster B, Dröse S, Jendrach M, Bereiter-Hahn J (2010) Do UCP2 and mild uncoupling improve longevity? Exp Gerontol 45:586-95.HeLa
Fibroblast
HUVEC
Wrzosek 2009 Eur J Pharmacol2009Wrzosek A, Lukasiak A, Gwozdz P, Malinska D, Kozlovski VI, Szewczyk A, Chlopicki S, Dolowy K (2009) Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function. Eur J Pharmacol 602:105-11.Pig
Rat
Heart
Endothelial;epithelial;mesothelial cell
Menna-Barreto 2009 Free Radic Biol Med2009Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 47:644-53.Protists
Soller 2007 Mol Pharmacol2007Soller M, Dröse S, Brandt U, BrĂŒne B, von Knethen A (2007) Mechanism of Thiazolidinedione-dependent cell death in Jurkat T cells. Mol Pharmacol 71:1535-44.Heart
Other cell lines
Labajova 2006 Anal Biochem2006Labajova A, Vojtiskova A, Krivakova P, Kofranek J, Drahota Z, Houstek J (2006) Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Anal Biochem 353:37-42.RatLiver
Schoenfeld 2004 Biochem J2004Schönfeld P, Kahlert S, Reiser G (2004) In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem J 383:121–28.Nervous system
Huetter 2004 Biochem J2004HĂŒtter E, Renner K, Pfister G, Stöckl P, Jansen-DĂŒrr P, Gnaiger E (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. https://doi.org/10.1042/BJ20040095HumanFibroblast
Pecina 2003 Biochim Biophys Acta2003Pecina P, Capkova M, Chowdhury SK, Drahota Z, Dubot A, Vojtiskova A, Hansikova H, Houstekova H, Zeman J, Godinot C, Houstek J (2003) Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta 1639:53-63.HumanEndothelial;epithelial;mesothelial cell
Fibroblast
Gregori 2002 Methods Cell Sci2002Grégori G, Denis M, LefÚvre D, Beker B (2002) A flow cytometric approach to assess phytoplankton respiration. Methods Cell Sci 24: 99-106.Plants
Eubacteria

Keywords: Force and membrane potential


Questions.jpg


Click to expand or collaps
Bioblast links: Force and membrane potential - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Fundamental relationships
» Force
» Affinity
» Flux
» Advancement
» Advancement per volume
» Stoichiometric number
mt-Membrane potential and protonmotive force
» Protonmotive force
» Mitochondrial membrane potential
» Chemical potential
» Faraday constant
» Format
» Uncoupler
O2k-Potentiometry
» O2k-Catalogue: O2k-TPP+ ISE-Module
» O2k-Manual: MiPNet15.03 O2k-MultiSensor-ISE
» TPP - O2k-Procedures: Tetraphenylphosphonium
» Specifications: MiPNet15.08 TPP electrode
» Poster
» Unspecific binding of TPP+
» TPP+ inhibitory effect
O2k-Fluorometry
» O2k-Catalogue: O2k-FluoRespirometer
» O2k-Manual: MiPNet22.11 O2k-FluoRespirometer manual
» Safranin - O2k-Procedures: MiPNet20.13 Safranin mt-membranepotential / Safranin
» TMRM - O2k-Procedures: TMRM
O2k-Publications
» O2k-Publications: mt-Membrane potential
» O2k-Publications: Coupling efficiency;uncoupling


MitoPedia concepts: Respiratory state, Recommended, Ergodynamics 


MitoPedia methods: Respirometry, Fluorometry 


MitoPedia topics: EAGLE 


Labels:






MitoPedia:NextGen-O2k