Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Regueira 2008 Crit Care Med"

From Bioblast
Line 1: Line 1:
{{Publication
{{Publication
|title=Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM (2008) Norepinephrine to increase blood pressure in endotoxaemic pigs is associated with improved hepatic mitochondrial respiration. Crit. Care 12: R88
|title=Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM (2008) Norepinephrine to increase blood pressure in endotoxaemic pigs is associated with improved hepatic mitochondrial respiration. Crit. Care Med.12: R88
|authors=Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM
|authors=Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM
|year=2008
|year=2008
|journal=Crit. Care
|journal=Crit. Care Med.
|mipnetlab=CH_Bern_DjafarzadehS
|mipnetlab=CH_Bern_DjafarzadehS
|abstract='''Introduction'''
|abstract='''Introduction'''

Revision as of 10:57, 19 October 2010

Publications in the MiPMap
Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM (2008) Norepinephrine to increase blood pressure in endotoxaemic pigs is associated with improved hepatic mitochondrial respiration. Crit. Care Med.12: R88

» PMID: 18625036

Regueira T, Baenziger B, Djafarzadeh S, Brandt S, Gorrasi J, Takala J, Lepper PM, Jakob SM (2008) Crit. Care Med.

Abstract: Introduction

Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis.

Methods

Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 μg/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed.

Results

Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per·kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per·kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria Complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (Complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; Complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity.

Conclusion

Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria Complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells. Keywords: Sepsis

O2k-Network Lab: CH_Bern_DjafarzadehS


Labels:


Organism: Pig  Tissue;cell: Hepatocyte; Liver"Hepatocyte; Liver" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex I, Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k 


Free article available