Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Sirtuins"

From Bioblast
Line 3: Line 3:
|description='''Sirtuins''' are NAD+-dependent deacetylases which play a prominent role as metabolic regulators. Their dependence on intracellular levels of NAD+ (NAD+ activates  sirtuin  activity,  whereas  NADH  inhibits  it) makes them suitable as sensors that can detect cellular energy status.
|description='''Sirtuins''' are NAD+-dependent deacetylases which play a prominent role as metabolic regulators. Their dependence on intracellular levels of NAD+ (NAD+ activates  sirtuin  activity,  whereas  NADH  inhibits  it) makes them suitable as sensors that can detect cellular energy status.


|info=[http://www.ncbi.nlm.nih.gov/pubmed/22395773 Houtkooper_2012_Nat Rev Mol Cell Biol]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/22395773 Houtkooper_2012_Nat Rev Mol Cell Biol]; [http://www.ncbi.nlm.nih.gov/pubmed/14724176 Lin_2004_Genes Dev]; [http://www.ncbi.nlm.nih.gov/pubmed?term=Exercise%20training%20promotes%20SIRT1%20activity Ferrara_2008_Rejuvenation Res]
}}
}}
{{MitoPedia methods}}
{{MitoPedia methods}}
Line 12: Line 12:


Sirtuins also differ according to their enzymatic activities. SIRT1 and SIRT5 exhibit deacetylase activity, SIRT4 probably acts as a mono-ADP-ribosyl transferase; SIRT2, SIRT3, and SIRT6 show both activities and the activity of SIRT7 remains still unclear although it is hypothesized that it acts as a deacetylase.
Sirtuins also differ according to their enzymatic activities. SIRT1 and SIRT5 exhibit deacetylase activity, SIRT4 probably acts as a mono-ADP-ribosyl transferase; SIRT2, SIRT3, and SIRT6 show both activities and the activity of SIRT7 remains still unclear although it is hypothesized that it acts as a deacetylase.
Metabolic stressors such as increased oxidative stress, intense endurance training or caloric restriction have an impact on SIRT activity, especially on SIRT1. It has been shown that activation of SIRT2 via decreased NADH levels in response to caloric restriction increased life-span in yeast.


'''Mechanism'''
'''Mechanism'''


Essentially, sirtuins catalyse the deacetylation of an acetylated substrate where NAD+ functions as a cosubstrate, yielding the deacetylated substrate, nicotinamide, and 2’-O-acetyl-ADP-ribose. A relatively high ''K''m for NAD+ and the NAD+ dependency puts the class of enzymes at the forefront of metabolic control in the cell by linking NAD+/NADH ratios with protein deacetylation.
Essentially, sirtuins catalyse the deacetylation of an acetylated substrate where NAD+ functions as a cosubstrate, yielding the deacetylated substrate, nicotinamide, and 2’-O-acetyl-ADP-ribose. A relatively high ''K''m for NAD+ and the NAD+ dependency puts the class of enzymes at the forefront of metabolic control in the cell by linking NAD+/NADH ratios with protein deacetylation.

Revision as of 03:45, 29 June 2012


high-resolution terminology - matching measurements at high-resolution


Sirtuins

Description

Sirtuins are NAD+-dependent deacetylases which play a prominent role as metabolic regulators. Their dependence on intracellular levels of NAD+ (NAD+ activates sirtuin activity, whereas NADH inhibits it) makes them suitable as sensors that can detect cellular energy status.

Abbreviation: Sirt

Reference: Houtkooper_2012_Nat Rev Mol Cell Biol; Lin_2004_Genes Dev; Ferrara_2008_Rejuvenation Res



MitoPedia topics: Enzyme 

Seven sirtuin orthologs which make up the ubiquitously expressed sirtuin family of enzymes are known to date (SIRT1–SIRT7). Although all sirtuins have a conserved catalytic core comprising 275 amino acids, they differ in their subcellular localization. The best characterized sirtuin, SIRT1, is mostly found in the nucleus but can shuttle to the cytosol. SIRT2 by contrast is found mainly in the cytoplasm. SIRT3, SIRT4, and SIRT5 are mainly located within the mitochondrion and SIRT6 and SIRT7 are nuclear proteins.

Sirtuins also differ according to their enzymatic activities. SIRT1 and SIRT5 exhibit deacetylase activity, SIRT4 probably acts as a mono-ADP-ribosyl transferase; SIRT2, SIRT3, and SIRT6 show both activities and the activity of SIRT7 remains still unclear although it is hypothesized that it acts as a deacetylase. Metabolic stressors such as increased oxidative stress, intense endurance training or caloric restriction have an impact on SIRT activity, especially on SIRT1. It has been shown that activation of SIRT2 via decreased NADH levels in response to caloric restriction increased life-span in yeast.

Mechanism

Essentially, sirtuins catalyse the deacetylation of an acetylated substrate where NAD+ functions as a cosubstrate, yielding the deacetylated substrate, nicotinamide, and 2’-O-acetyl-ADP-ribose. A relatively high Km for NAD+ and the NAD+ dependency puts the class of enzymes at the forefront of metabolic control in the cell by linking NAD+/NADH ratios with protein deacetylation.