Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Wenchich 2003 Physiol Res"

From Bioblast
Line 3: Line 3:
|authors=Wenchich L, Drahota Z, Honzik T, Hansikova H, Tesarova M, Zeman J, Houstek J
|authors=Wenchich L, Drahota Z, Honzik T, Hansikova H, Tesarova M, Zeman J, Houstek J
|year=2003
|year=2003
|journal=Physiological Research
|journal=Physiol. Res.
|abstract=Inherited disturbances of the mitochondrial energy generating system represent a heterogeneous group of disorders associated with a broad spectrum of metabolic abnormalities and clinical symptoms. We used the polarographic and spectrophotometric method for detection of mitochondrial disorders, because these two techniques provide a different insight into mitochondrial function. In six patients suspected of mitochondrial disease we found defects of complex I (two patients), complex III (one patient), complex IV (two patients) and a combination of defect of complex III and IV (one patient). Citrate synthase activity, used as the reference enzyme, was not changed. A comparison of the two methods showed several differences in evaluation of mitochondrial enzymes activity due to the fact that both methods used different conditions for enzyme activity measurements. In contrast to oxygen consumption measurements, where the function of the whole-integrated respiratory chain is characterized, spectrophotometric measurements characterize activities of isolated complexes in disintegrated membranes. However, it may be concluded from our experiments that both methods provide useful and complementary data about mitochondrial energetic functions. Whereas spectrophotometric data are suitable for evaluation of maximal enzyme activities of mitochondrial enzyme complexes, polarographic data provide better information about enzyme activities in cells with mitochondrial defects under in situ conditions.
|abstract=Inherited disturbances of the mitochondrial energy generating system represent a heterogeneous group of disorders associated with a broad spectrum of metabolic abnormalities and clinical symptoms. We used the polarographic and spectrophotometric method for detection of mitochondrial disorders, because these two techniques provide a different insight into mitochondrial function. In six patients suspected of mitochondrial disease we found defects of complex I (two patients), complex III (one patient), complex IV (two patients) and a combination of defect of complex III and IV (one patient). Citrate synthase activity, used as the reference enzyme, was not changed. A comparison of the two methods showed several differences in evaluation of mitochondrial enzymes activity due to the fact that both methods used different conditions for enzyme activity measurements. In contrast to oxygen consumption measurements, where the function of the whole-integrated respiratory chain is characterized, spectrophotometric measurements characterize activities of isolated complexes in disintegrated membranes. However, it may be concluded from our experiments that both methods provide useful and complementary data about mitochondrial energetic functions. Whereas spectrophotometric data are suitable for evaluation of maximal enzyme activities of mitochondrial enzyme complexes, polarographic data provide better information about enzyme activities in cells with mitochondrial defects under in situ conditions.
|keywords=Mitochondria, Muscle cells, Respiratory chain complexes, Polarography, Spectrophotometry
|keywords=Mitochondria, Muscle cells, Respiratory chain complexes, Polarography, Spectrophotometry
Line 13: Line 13:
|topics=Respiration; OXPHOS; ETS Capacity
|topics=Respiration; OXPHOS; ETS Capacity
|instruments=Oxygraph-2k, Spectrophotometry; Spectrofluorimetry
|instruments=Oxygraph-2k, Spectrophotometry; Spectrofluorimetry
|articletype=Protocol; Manual
}}
}}

Revision as of 11:31, 14 October 2010

Publications in the MiPMap
Wenchich L, Drahota Z, Honzík T, Hansíková H, Tesarová M, Zeman J, Houstek J (2003) Polarographic evaluation of mitochondrial enzymes activity in isolated mitochondria and in permeabilized human muscle cells with inherited mitochondrial defects. Physiol. Res. 52: 781-788.

» PMID: 14640901

Wenchich L, Drahota Z, Honzik T, Hansikova H, Tesarova M, Zeman J, Houstek J (2003) Physiol. Res.

Abstract: Inherited disturbances of the mitochondrial energy generating system represent a heterogeneous group of disorders associated with a broad spectrum of metabolic abnormalities and clinical symptoms. We used the polarographic and spectrophotometric method for detection of mitochondrial disorders, because these two techniques provide a different insight into mitochondrial function. In six patients suspected of mitochondrial disease we found defects of complex I (two patients), complex III (one patient), complex IV (two patients) and a combination of defect of complex III and IV (one patient). Citrate synthase activity, used as the reference enzyme, was not changed. A comparison of the two methods showed several differences in evaluation of mitochondrial enzymes activity due to the fact that both methods used different conditions for enzyme activity measurements. In contrast to oxygen consumption measurements, where the function of the whole-integrated respiratory chain is characterized, spectrophotometric measurements characterize activities of isolated complexes in disintegrated membranes. However, it may be concluded from our experiments that both methods provide useful and complementary data about mitochondrial energetic functions. Whereas spectrophotometric data are suitable for evaluation of maximal enzyme activities of mitochondrial enzyme complexes, polarographic data provide better information about enzyme activities in cells with mitochondrial defects under in situ conditions. Keywords: Mitochondria, Muscle cells, Respiratory chain complexes, Polarography, Spectrophotometry


Labels:

Stress:Mitochondrial Disease; Degenerative Disease and Defect"Mitochondrial Disease; Degenerative Disease and Defect" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property. 


Enzyme: Complex I, Complex III, Complex IV; Cytochrome c Oxidase"Complex IV; Cytochrome c Oxidase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k, Spectrophotometry; Spectrofluorimetry"Spectrophotometry; Spectrofluorimetry" is not in the list (Oxygraph-2k, TIP2k, O2k-Fluorometer, pH, NO, TPP, Ca, O2k-Spectrophotometer, O2k-Manual, O2k-Protocol, ...) of allowed values for the "Instrument and method" property.