Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Fatty acid"

From Bioblast
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{MitoPedia
{{MitoPedia
|abbr=FA
|abbr=FA
|description='''Fatty acids''' are carboxylic acids with a carbon aliphatic chain. The fatty acids can be divided by the length of this chain, being considered as short-chain (4–8 carbons), medium-chain (6–12 carbons) and long-chain (14-22 carbons) fatty acids.
|description='''Fatty acids''' are carboxylic acids with a carbon aliphatic chain. The fatty acids can be divided by the length of this chain, being considered as short-chain (1–6 carbons), medium-chain (7–12 carbons) and long-chain and very long-chain fatty acids (>12 carbons).
Long-chain fatty acids must be bound to [[Carnitine|carnitine]] to enter the mitochondrial matrix, in a reaction that can be catalysed by [[Carnitine acyltransferase|carnitine acyltransferase]]. For this reason, long-chain fatty acids, such as [[Palmitate|palmitate]] (16 carbons) is frequently supplied to mt-preparations in the activated form of [[Palmitoylcarnitine|palmitoylcarnitine]].
Long-chain fatty acids must be bound to [[Carnitine|carnitine]] to enter the mitochondrial matrix, in a reaction that can be catalysed by [[Carnitine acyltransferase|carnitine acyltransferase]]. For this reason, long-chain fatty acids, such as [[Palmitate|palmitate]] (16 carbons) is frequently supplied to mt-preparations in the activated form of [[Palmitoylcarnitine|palmitoylcarnitine]].
Fatty acids with shorter chains, as [[Octanoate|octanoate]] (8 carbons) may enter the mitochondrial matrix, however, in HRR they are more frequently supplied also in the activated form, such as [[Octanoylcarnitine|octanoylcarnitine]].
Fatty acids with shorter chains, as [[Octanoate|octanoate]] (8 carbons) may enter the mitochondrial matrix, however, in HRR they are more frequently supplied also in the activated form, such as [[Octanoylcarnitine|octanoylcarnitine]].


Once in the mitochondrial matrix, the [[Fatty acid oxidation|fatty acid oxidation]] (FAO) occurs, generating acetyl-CoA, NADH and FADH2. In the [[Fatty acid oxidation pathway control state|fatty acid oxidation pathway control state]] electrons are fed into the [[F-junction]] involving the [[electron transferring flavoprotein]] (CETF). FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO. {{Template:SUIT M low}}
Once in the mitochondrial matrix, the [[Fatty acid oxidation|fatty acid oxidation]] (FAO) occurs, generating acetyl-CoA, NADH and FADH2. In the [[Fatty acid oxidation pathway control state|fatty acid oxidation pathway control state]] electrons are fed into the [[F-junction]] involving the [[electron transferring flavoprotein]] (CETF). FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO. {{Template:SUIT M low}}
|info=[[Gnaiger 2020 MitoPathways]]
|info=[[Gnaiger 2020 BEC MitoPathways]], [[Schönfeld 2016 J Lipid Res]]
}}
}}
== Fatty acids used in [[HRR]] ==
== Fatty acids used in [[HRR]] ==
Line 16: Line 16:
{{MitoPedia topics
{{MitoPedia topics
|mitopedia topic=Substrate and metabolite
|mitopedia topic=Substrate and metabolite
}}
{{Labeling
|additional=MitoPedia:FAT4BRAIN
}}
}}

Latest revision as of 16:14, 13 January 2022


high-resolution terminology - matching measurements at high-resolution


Fatty acid

Description

Fatty acids are carboxylic acids with a carbon aliphatic chain. The fatty acids can be divided by the length of this chain, being considered as short-chain (1–6 carbons), medium-chain (7–12 carbons) and long-chain and very long-chain fatty acids (>12 carbons). Long-chain fatty acids must be bound to carnitine to enter the mitochondrial matrix, in a reaction that can be catalysed by carnitine acyltransferase. For this reason, long-chain fatty acids, such as palmitate (16 carbons) is frequently supplied to mt-preparations in the activated form of palmitoylcarnitine. Fatty acids with shorter chains, as octanoate (8 carbons) may enter the mitochondrial matrix, however, in HRR they are more frequently supplied also in the activated form, such as octanoylcarnitine.

Once in the mitochondrial matrix, the fatty acid oxidation (FAO) occurs, generating acetyl-CoA, NADH and FADH2. In the fatty acid oxidation pathway control state electrons are fed into the F-junction involving the electron transferring flavoprotein (CETF). FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO. Low concentration of malate, typically 0.1 mM, does not saturate the N-pathway; but saturates the F-pathway.

Abbreviation: FA

Reference: Gnaiger 2020 BEC MitoPathways, Schönfeld 2016 J Lipid Res

Fatty acids used in HRR


MitoPedia topics: Substrate and metabolite 


Labels:






MitoPedia:FAT4BRAIN