Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
No edit summary
Ā 
(284 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Gnaiger E (2023) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3.v2. https://doi.org/10.26124/mitofit:2023-0003.v2
|title=Gnaiger E (2023) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - ''' [[Gnaiger 2024 J Biol Chem |''Published 2023-11-22 J Biol Chem (2024)'']]
|info=MitoFit Preprints 2023.3.v2. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system]<br/>
|info=MitoFit Preprints 2023.3.v6. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system]<br/>
|authors=Gnaiger Erich
|authors=Gnaiger Erich
|year=2023
|year=2023
|journal=MitoFit Prep
|journal=MitoFit Prep
|abstract=[[File:CII-ambiguities Graphical abstract.png|200px|left]]
|abstract=[[File:CII-ambiguities Graphical abstract.png|150px|left]]
::: <small>'''Version 2 (v2) 2023-04-04''' [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf 10.26124/mitofit:2023-0003.v2]</small>
::: Gnaiger E (2024) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
::: <small>Version 1 (v1) 2023-03-247 [https://wiki.oroboros.at/images/archive/a/ae/20230404153753%21Gnaiger_2023_MitoFit_CII.pdf 10.26124/mitofit:2023-0003] - [https://wiki.oroboros.at/index.php/File:Gnaiger_2023_MitoFit_CII.pdf Ā»Link to all versionsĀ«]</small>
::: <small>Version 6 (v6) 2023-06-21 </small>
The current narrative that the reduced coenzymes NADH and FADH<sub>2</sub> feed electrons from the tricarboxylic acid cycle into the mitochondrial electron transfer system creates ambiguities around respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces covalently bound FAD to FADH<sub>2</sub> in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the membrane-bound electron transfer system (ETS) depict FADH<sub>2</sub> in the mitochondrial matrix to be oxidized by CII. This leads to the false conclusion that FADH<sub>2</sub> feeds electrons into the ETS through CII, including FADH<sub>2</sub> from the tricarboxylic acid cycle, the Ī²-oxidation cycle in fatty acid oxidation, and the glycerophosphate shuttle. In reality, FAD and succinate are the ''substrates'' of SDHA at the ETS-entry into CII. The reduced flavin groups FADH<sub>2</sub> and FMNH<sub>2</sub> are ''products'' downstream within CII and CI, respectively. Further electron transfer converges at the coenzyme Q-junction. Similarly, electron transferring flavoprotein and mitochondrial glycerophosphate dehydrogenase feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational tools call for quality control, to secure scientific standards in current communications on bioenergetics and ultimately support adequate clinical applications.
::: <small>Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - [https://wiki.oroboros.at/index.php/File:Gnaiger_2023_MitoFit_CII.pdf Ā»Link to all versionsĀ«]</small>
The prevailing notion that reduced cofactors NADH and FADH<sub>2</sub> transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH<sub>2</sub> in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH<sub>2</sub> in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH<sub>2</sub> from the Ī²-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent '''[[ambiguity crisis]]''', complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
<br>
<br>
|keywords=coenzyme Q junction; Complex CII; electron transfer system; fatty acid oxidation; flavin adenine dinucleotide;succinate dehydrogenase; tricarboxylic acid cycle
|keywords=[[coenzyme]]; [[cofactor]]; [[prosthetic group]]; coenzyme Q junction, Q-junction; Complex II, CII; [[H+-linked electron transfer |H<sup>+</sup>-linked electron transfer]]; [[electron transfer system]], ETS; [[matrix-ETS]]; [[membrane-ETS]]; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH<sub>2</sub>; nicotinamide adenine dinucleotide, NAD<sup>+</sup>/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; [[substrate]]; [[Gibbs force]]
|mipnetlab=AT Innsbruck Oroboros
|mipnetlab=AT Innsbruck Oroboros
}}
}}
{{Labeling
|enzymes=Complex II;succinate dehydrogenase
|additional=FAT4BRAIN, Publication:FAT4BRAIN
}}
[[File:N-S FADH2-FMNH2.png|right|600px]]
:::: '''Figure 1. Complex II bridges electron transfer from the TCA cycle to the mitochondrial inner membrane'''. Graphical representations of the electron transfer system ETS with successive emphasis on pathway architecture and concomitant loss of detail. CII is integrated in the TCA cycle (matrix-ETS) and the membrane-bound electron transfer system (membrane-ETS in the mt-inner membrane mtIM). Joint half-circular arrows indicate electron transfer 2{H<sup>+</sup>+eĀ­<sup>-</sup>}, distinguished from hydrogen ion H<sup>+</sup> transport across the mtIM. '''(a)''' In the soluble domain of CII, the flavoprotein SDHA catalyzes the oxidation succinate ā†’ fumarate+2{H<sup>+</sup>+e<sup>-</sup>} and reduction FAD+2{H<sup>+</sup>+e<sup>-</sup>} ā†’ FADH<sub>2</sub>. The ironā€“sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced with 2{H<sup>+</sup>+e<sup>-</sup>} to ubiquinol UQH<sub>2</sub> in SDHC and SDHD. '''(b)''' NADH and succinate are substrates of redox reactions in CI and CII, respectively, with FMNH<sub>2</sub> and FADH<sub>2</sub> as the corresponding products. Succinate and fumarate indicate the chemical entities irrespective of ionization, whereas the charges are shown in NADH, NAD<sup>+</sup>, and H<sup>+</sup>. '''(c)''' Electron flow catalyzed by dehydrognases localized in the mitochondrial (mt) matrix converges at the N-junction, reducing NAD<sup>+</sup> to NADH. Electron flow from NADH and succinate S to molecular oxygen, 2{H<sup>+</sup>+e<sup>-</sup>}+0.5 O<sub>2</sub> ā‡¢ H<sub>2</sub>O, converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome ''c'' and in CIV to O<sub>2</sub>.
ORC'''ID''': [[File:ORCID.png|20px|link=https://orcid.org/0000-0003-3647-5895]] Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria
:::: '''Acknowledgements''': I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1b and c. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).
__TOC__
__TOC__
=== Updates to Supplement Figure S1 ===
::::'''Ā» ''Links:''''' [[Ambiguity crisis]], [[Complex II ambiguities]], [[:Category:Ambiguity crisis - NAD and H+ |Complex I and hydrogen ion ambiguities in the electron transfer system]]
Last update 2023-04-15
:::: '''Acknowledgements''': I thank [[Cardoso Luiza HD |Luiza H.D. Cardoso]], [[Schmitt Sabine |Sabine Schmitt]], and [[Donnelly Chris |Chris Donnelly]] for stimulating discussions, and [[Cocco Paolo |Paolo Cocco]] for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 ([[FAT4BRAIN]]).
:::: '''Figure S1.''' Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.
<br>


:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
== Additions to 312 references on CII-ambiguities after publication of JBC 2024 ==
:::: '''1''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |Ā»Bioblast linkĀ«]]
Last update 2023-12-19
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:::::: [[File:Bektas 2019 Aging (Albany NY) CORRECTION.png|400px|link=Bektas 2019 Aging (Albany NY)]]
<br>
:::: '''#1''' Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. '''Aging (Albany NY)''' 11:9234-63. - [[Bektas 2019 Aging (Albany NY) |Ā»Bioblast linkĀ«]]


:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::: '''2''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::::: [[File:Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png|400px|link=Ben-Shachar 2009 J Neural Transm (Vienna)]]
:::: '''3''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |Ā»Bioblast linkĀ«]]
:::: '''#2''' Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. '''J Neural Transm (Vienna)''' 116:1383-96. - [[Ben-Shachar 2009 J Neural Transm (Vienna) |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::: '''4''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::::: [[File:Bon 2022 J Clin Case Rep Stud CORRECTION.png|400px|link=Bon 2022 J Clin Case Rep Stud]]
:::: '''5''' Bețiu AM, Noveanu L, HĆ¢ncu IM, Lascu A, Petrescu L, Maack C, ElmĆ©r E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
:::: '''#3''' Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. '''J Clin Case Rep Stud''' 3. - [[Bon 2022 J Clin Case Rep Stud |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::: '''6''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::::: [[File:Elsaeed 2021 Medicine Updates CORRECTION.png|400px|link=Elsaeed 2021 Medicine Updates]]
:::: '''7''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |Ā»Bioblast linkĀ«]]
:::: '''#4''' Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. '''Medicine Updates''' 6:41-63. - [[Elsaeed 2021 Medicine Updates |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::: '''8''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia Press |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::::: [[File:Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png|400px|link=Facucho-Oliveira 2009 Stem Cell Rev Rep]]
:::: '''9''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
:::: '''#5''' Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. '''Stem Cell Rev Rep''' 5:140-58. - [[Facucho-Oliveira 2009 Stem Cell Rev Rep |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::: '''10''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::::: [[File:Iqbal 2014 Springer, New York CORRECTION.png|400px|link=Iqbal 2014 Springer, New York]]
:::: '''11''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |Ā»Bioblast linkĀ«]]
:::: '''#6''' Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. '''Springer''', New York. - [[Iqbal 2014 Springer, New York |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::: '''12''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::::: [[File:Keogh 2015 Biochim Biophys Acta CORRECTION.png|400px|link=Keogh 2015 Biochim Biophys Acta]]
:::: '''13''' Hidalgo-GutiĆ©rrez A, GonzĆ”lez-GarcĆ­a P, DĆ­az-Casado ME, Barriocanal-Casado E, LĆ³pez-Herrador S, Quinzii CM, LĆ³pez LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |Ā»Bioblast linkĀ«]]
:::: '''#7''' Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. '''Biochim Biophys Acta''' 1847:1401-11. - [[Keogh 2015 Biochim Biophys Acta |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''14''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Kunst 2023 Biomedicines CORRECTION.png|400px|link=Kunst 2023 Biomedicines]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''#8''' Kunst C, Schmid S, Michalski M, TĆ¼men D, Buttenschƶn J, MĆ¼ller M, GĆ¼low K (2023) The influence of gut microbiota on oxidative stress and the immune system. '''Biomedicines''' 11:1388. - [[Kunst 2023 Biomedicines |Ā»Bioblast linkĀ«]]
:::: '''15''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''16''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|400px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::::: [[File:Lal 2018 Springer CORRECTION.png|400px|link=Lal 2018 Springer]]
:::: '''17''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |Ā»Bioblast linkĀ«]]
:::: '''#9''' Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. '''Springer''', Singapore:253-314. - [[Lal 2018 Springer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::: '''18''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::::: [[File:Lane 2000 Pediatr Res CORRECTION.png|400px|link=Lane 2000 Pediatr Res]]
:::: '''19''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |Ā»Bioblast linkĀ«]]
:::: '''#10''' Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. '''Pediatr Res''' 47:792-7. - [[Lane 2000 Pediatr Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::: '''20''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::::: [[File:Palma 2023 Oncogene CORRECTION.png|400px|link=Palma 2023 Oncogene]]
:::: '''21''' MartĆ­nez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |Ā»Bioblast linkĀ«]]
:::: '''#11''' Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? '''Oncogene'''. - [[Palma 2023 Oncogene |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::: '''22''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::::: [[File:Quintard 2018 Springer, Cham CORRECTION.png|400px|link=Quintard 2018 Springer, Cham]]
:::: '''23''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |Ā»Bioblast linkĀ«]]
:::: '''#12''' Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. '''Springer''', Cham. - [[Quintard 2018 Springer, Cham |Ā»Bioblast linkĀ«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>


:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::: '''24''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::::: [[File:Reiss 2022 Exp Gerontol CORRECTION.png|400px|link=Reiss 2022 Exp Gerontol]]
:::: '''25''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |Ā»Bioblast linkĀ«]]
:::: '''#13''' Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. '''Exp Gerontol''' 164:111828. - [[Reiss 2022 Exp Gerontol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::: '''26''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
:::::: [[File:Saghiv 2020 Springer, Cham CORRECTION.png|400px|link=Saghiv 2020 Springer, Cham]]
:::: '''27''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |Ā»Bioblast linkĀ«]]
:::: '''#14''' Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. '''Springer''', Cham. - [[Saghiv 2020 Springer, Cham |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::: '''28''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::::: [[File:SiouNing 2023 Molecules CORRECTION.png|400px|link=SiouNing 2023 Molecules]]
:::: '''29''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |Ā»Bioblast linkĀ«]]
:::: '''#15''' SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. '''Molecules''' 28:4357. - [[SiouNing 2023 Molecules |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::: '''30''' Grandoch M, Flƶgel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, CastaƱeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sƶrgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |Ā»Bioblast linkĀ«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>


:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::::: [[File:St John 2012 Cell Tissue Res CORRECTION.png|400px|link=St John 2012 Cell Tissue Res]]
:::: '''31''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |Ā»Bioblast linkĀ«]]
:::: '''#16''' St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. '''Cell Tissue Res''' 349:795-808. - [[St John 2012 Cell Tissue Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::: '''32''' McCollum C, GeiƟelsƶder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png|400px|link=Cronshaw 2019 Photobiomodul Photomed Laser Surg]]
:::::: [[File:Su 2020 Mol Biol Rep CORRECTION.png|400px|link=Su 2020 Mol Biol Rep]]
:::: '''33''' Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. '''Photobiomodul Photomed Laser Surg''' 37:517-26. - [[Cronshaw 2019 Photobiomodul Photomed Laser Surg |Ā»Bioblast linkĀ«]]
:::: '''#17''' Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. '''Mol Biol Rep''' 47:8023-35. - [[Su 2020 Mol Biol Rep |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::: '''34''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::::: [[File:Thorgersen 2022 Front Microbiol CORRECTION.png|400px|link=Thorgersen 2022 Front Microbiol]]
:::: '''35''' Escoll P, Platon L, Buchrieser C (2023) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |Ā»Bioblast linkĀ«]]
:::: '''#18''' Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. '''Front Microbiol''' 13:965625. - [[Thorgersen 2022 Front Microbiol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::: '''36''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::::: [[File:Venkatachalam 2022 Cells CORRECTION.png|400px|link=Venkatachalam 2022 Cells]]
:::: '''37''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |Ā»Bioblast linkĀ«]]
:::: '''#19''' Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. '''Cells''' 11:1180. - [[Venkatachalam 2022 Cells |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::: '''38''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2017 Cell Metab]]
:::::: [[File:Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Wall 2006 Am J Physiol Heart Circ Physiol]]
:::: '''39''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2017) 17Ī²-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2017 Cell Metab |Ā»Bioblast linkĀ«]]
:::: '''#20''' Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. '''Am J Physiol Heart Circ Physiol''' 291:H2462-72. - [[Wall 2006 Am J Physiol Heart Circ Physiol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::: '''40''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::::: [[File:Wang 2017 Am J Reprod Immunol CORRECTION.png|400px|link=Wang 2017 Am J Reprod Immunol]]
:::: '''41''' MartĆ­nez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |Ā»Bioblast linkĀ«]]
:::: '''#21''' Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. '''Am J Reprod Immunol''' 77. - [[Wang 2017 Am J Reprod Immunol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''42''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::::: [[File:Wider 2023 Crit Care CORRECTION.png|400px|link=Wider 2023 Crit Care]]
:::: '''43''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |Ā»Bioblast linkĀ«]]
:::: '''#22''' Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, Oā€™Neil B, Neumar RW, Przyklenk K, HĆ¼ttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. '''Crit Care''' 27:491. - [[Wider 2023 Crit Care |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
:::: '''44''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::::: [[File:Wu 2022 Front Chem CORRECTION.png|400px|link=Wu 2022 Front Chem]]
:::: '''45''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |Ā»Bioblast linkĀ«]]
:::: '''#23''' Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. '''Front Chem''' 10:948453. - [[Wu 2022 Front Chem |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
:::: '''46''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::::: [[File:Zapico 2013 Aging Dis CORRECTION.png|400px|link=Zapico 2013 Aging Dis]]
:::: '''47''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |Ā»Bioblast linkĀ«]]
:::: '''#24''' Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. '''Aging Dis''' 4:364-80. - [[Zapico 2013 Aging Dis |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::: '''48''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
== Supplement: FADH<sub>2</sub> or FADH as substrate of CII in websites ==
:::: '''49''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH ā†’ FAD+H ('''g'''), FADH<sub>2</sub> ā†’ FAD+2H<sup>+</sup> ('''aā€™''', '''c''', '''h-n'''), and FADH<sub>2</sub> ā†’ FAD ('''a''', '''b''', '''d-f''', '''o-Īø''') should be corrected to FADH<sub>2</sub> ā†’ FAD (Eq. 3b). NADH ā†’ NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH ā†’ NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH ā†’ NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> ā†’ NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH ā†’ NAD ('''Ī¹''') should be corrected to NADH+H<sup>+</sup> ā†’ NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
:::: '''50''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::::: [[File:OpenStax Biology.png|400px]]
:::: '''51''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |Ā»Bioblast linkĀ«]]
::: ('''a''')
<br>
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
:::: '''Website 7''' ('''a'''): [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
:::: '''Website 8''' ('''a'''): [https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain Brooder]


:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|400px]]
:::: '''52''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |Ā»Bioblast linkĀ«]]
::: ('''aā€™''')
<br>
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::::: [[File:Expii OpenStax CORRECTION.png|400px]]
:::: '''53''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |Ā»Bioblast linkĀ«]]
::: ('''b''')
<br>
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.13
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax


:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
:::: '''54''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |Ā»Bioblast linkĀ«]]
::: ('''c''')
<br>
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 13''' ('''c'''): [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
:::: '''Website 14''' ('''c'''): [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::: '''Website 15''' ('''c'''): [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]
:::: '''Website 16''' ('''c'''): [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 17''' ('''c'''): [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]


:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::::: [[File:Labxchange CORRECTION.png|400px]]
:::: '''55''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |Ā»Bioblast linkĀ«]]
::: ('''d''')
<br>
:::: '''Website 18''' ('''d'''): [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier


:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::::: [[File:Jack Westin CORRECTION.png|400px]]
:::: '''56''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |Ā»Bioblast linkĀ«]]
::: ('''e''')
<br>
:::: '''Website 19''' ('''e'''): [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]


:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::::: [[File:Videodelivery CORRECTION.png|400px]]
:::: '''57''' Hamanaka RB, Chandel NS (2013) Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |Ā»Bioblast linkĀ«]]
::: ('''f''')
<br>
:::: '''Website 20''' ('''f'''): [https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg videodelivery]


:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::::: [[File:SparkNotes CORRECTION.png|400px]]
:::: '''58''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |Ā»Bioblast linkĀ«]]
::: ('''g''')
<br>
:::: '''Website 21''' ('''g'''): [https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/ - SparkNotes]


:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::::: [[File:Researchtweet CORRECTION.png|400px]]
:::: '''59''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |Ā»Bioblast linkĀ«]]
::: ('''h''')
<br>
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 23''' ('''h'''): [https://microbenotes.com/electron-transport-chain/ Microbe Notes]


:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
:::: '''60''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |Ā»Bioblast linkĀ«]]
::: ('''i''')
<br>
:::: '''Website 24''' ('''i'''): [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2


:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::::: [[File:Labster Theory CORRECTION.png|400px]]
:::: '''61''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |Ā»Bioblast linkĀ«]]
::: ('''j''')
<br>
:::: '''Website 25''' ('''j'''): [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]


=== Supplement Figure S1 (v2) ===
:::::: [[File:Nau.edu CORRECTION.png|400px]]
::: ('''k''')
:::: '''Website 26''' ('''k'''): [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]


:::: '''Figure S1.''' Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.
:::::: [[File:ScienceFacts CORRECTION.png|400px]]
<br>
::: ('''l''')
:::: '''Website 27''' ('''l'''): [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::::: [[File:Ck12 CORRECTION.png|400px]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |Ā»Bioblast linkĀ«]]
::: ('''m''')
<br>
:::: '''Website 28''' ('''m'''): [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]


:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|700px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
:::: '''b''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |Ā»Bioblast linkĀ«]]
::: ('''n''')
<br>
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 29''' ('''n'''): [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]


:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
:::: '''c''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |Ā»Bioblast linkĀ«]]
::: ('''o''')
<br>
:::: '''Website 30''' ('''o'''): [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]


:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|400px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::::: [[File:Vector Mine CORRECTION.png|400px]]
:::: '''d''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |Ā»Bioblast linkĀ«]]
::: ('''p''')
<br>
:::: '''Website 31''' ('''p'''): [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
:::: '''Website 32''' ('''p'''): [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]


:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
:::: '''e''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
::: ('''q''')
<br>
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18


:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:DBriers CORRECTION.png|400px]]
:::: '''f''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |Ā»Bioblast linkĀ«]]
::: ('''r''')
<br>
:::: '''Website 34''' ('''r'''): [http://www.dbriers.com/tutorials/ DBriers]


:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::::: [[File:SNC1D CORRECTION.png|400px]]
:::: '''g''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
::: ('''s''')
<br>
:::: '''Website 35''' ('''s'''): [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]


:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]] Ā 
:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
:::: '''h''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |Ā»Bioblast linkĀ«]]
::: ('''t''')
<br>
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 36''' ('''t'''): [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::::: [[File:Hyperphysics CORRECTION.png|400px]]
:::: '''i''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |Ā»Bioblast linkĀ«]] Ā 
::: ('''u''')
:::: '''Website 37''' ('''u'''): [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]


:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]] Ā 
:::::: [[File:Khan Academy CORRECTION.png|400px]]
:::: '''j''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |Ā»Bioblast linkĀ«]]
::: ('''v''')
<br>
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
:::: '''k''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |Ā»Bioblast linkĀ«]]
::: ('''w''')
<br>
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:UrbanPro CORRECTION.png|400px]]
:::: '''l''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |Ā»Bioblast linkĀ«]]
::: ('''x''')
<br>
:::: '''Website 38''' ('''x'''): [https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation UrbanPro]


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::::: [[File:Quizlet CORRECTION.png|400px]]
:::: '''m''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |Ā»Bioblast linkĀ«]]
::: ('''y''')
<br>
:::: '''Website 39''' ('''y'''): [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::::: [[File:Unm.edu CORRECTION.png|400px]]
:::: '''n''' MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |Ā»Bioblast linkĀ«]]
::: ('''z''')
<br>
:::: '''Website 40''' ('''z'''): [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]


:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
:::: '''o''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |Ā»Bioblast linkĀ«]]
::: ('''Ī±''')
<br>
:::: '''Website 41''' ('''Ī±'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19


:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''p''' Risiglione P, Leggio L, Cubisino SAM, Reina S, PaternĆ² G, Marchetti B, MagrƬ A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |Ā»Bioblast linkĀ«]]
::: ('''Ī²''')
<br>
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii] - Image source: By Gabi Slizewska


:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
:::::: [[File:BiochemDen CORRECTION.png|400px]]
:::: '''q''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |Ā»Bioblast linkĀ«]]
::: ('''Ī³''')
<br>
:::: '''Website 42''' ('''Ī³'''): [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]


:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::::: [[File:Hopes CORRECTION.png|400px]]
:::: '''r''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |Ā»Bioblast linkĀ«]]
:::('''Ī“''')
<br>
:::: '''Website 43''' ('''Ī“'''): [https://hopes.stanford.edu/riboflavin/ hopes, Huntingtonā€™s outreach project for education, at Stanford]


:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::::: [[File:Studocu CORRECTION.png|400px]]
:::: '''s''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |Ā»Bioblast linkĀ«]]
::: ('''Īµ''')
<br>
:::: '''Website 44''' ('''Īµ'''): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]


:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::::: [[File:ScienceDirect CORRECTION.png|400px]]
:::: '''t''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |Ā»Bioblast linkĀ«]]
::: ('''Ī¶''')
:::: '''Website 45''' ('''Ī¶'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]


:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::::: [[File:BBC BITESIZE CORRECTION.png|400px]]
:::: '''u''' YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |Ā»Bioblast linkĀ«]]
::: ('''Ī·''')
<br>
:::: '''Website 46''' ('''Ī·'''): [https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 BBC BITESIZE cK-12]
Ā 
:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::: '''v''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::::: [[File:Freepik CORRECTION.png|400px]]
:::: '''w''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |Ā»Bioblast linkĀ«]]
::: ('''Īø''')
<br>
:::: '''Website 47''' ('''Īø'''): [https://www.freepik.com/premium-vector/oxidative-phosphorylation-process-electron-transport-chain-final-step-cellular-respiration_29211885.htm freepik]


:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::::: [[File:LibreTexts Chemistry_CORRECTION.png|400px]]
:::: '''x''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
::: ('''Ī¹''')
<br>
:::: '''Website 48''' ('''Ī¹'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3
Ā 
:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: '''y''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::: '''z''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |Ā»Bioblast linkĀ«]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
<br>
<br>


:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: '''Ī±''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. '''Elsevier''' In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
<big>'''from FAO and CII ambiguitiy to CII as a H<sup>+</sup> in websites'''</big>
:::: '''Ī²''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::::: [[File:CHM333 LECTURES CORRECTION.png|250px]]
:::: '''Ī³''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |Ā»Bioblast linkĀ«]]
:::: '''xx''' [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna]
<br>
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: '''Ī“''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
(retrieved 2023-03-21 to 2023-05-02)
:::: '''Īµ, Ī¶''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |Ā»Bioblast linkĀ«]]
:::: '''Website 49''': [https://conductscience.com/electron-transport-chain/ Conduct Science]: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH<sub>2</sub> to FAD<sup>+</sup>. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH<sub>2</sub> is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH<sub>2</sub>.
<br>


:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::: '''Website 50''': [https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-mitochondrial-functions/ The Medical Biochemistry Page]: ā€˜In addition to transferring electrons from the FADH<sub>2</sub> generated by SDH, complex II also accepts electrons from the FADH<sub>2</sub> generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttleā€™ (Figure 8d).
:::: '''Ī·''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::: '''Website 51''': [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna]: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.
:::: '''Ī˜''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: '''ĪÆ''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''Īŗ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |Ā»Bioblast linkĀ«]]
:::: '''xx''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ā€˜FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electronsā€™ (retrieved 2023-05-04).
<br>


:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::: '''Ī»''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |Ā»Bioblast linkĀ«]]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::: Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |Ā»Bioblast linkĀ«]]
:::: '''xx''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).
<br>


=== Supplement Figure S2 (v2) ===
{{Template:Keywords: Substrates and cofactors}}
Ā 
== Cited by ==
:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer (retrieved 2023-03-21 to 2023-04-04)
{{Template:Cited by Gnaiger 2024 MitoFit}}
Ā 
[[Category:Ambiguity crisis - CII and FADH2]]
:::::: [[File:OpenStax Biology.png|400px]]
{{Labeling
:::: '''Website 1''': [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
|area=Patients, mt-Awareness
:::: '''Website 2''': [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
|enzymes=Complex II;succinate dehydrogenase
:::: '''Website 3''': [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
|additional=Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN
:::: '''Website 4''': [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
}}
:::: '''Website 5''': [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 37''': [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''Website 38''': [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - Charles Molnar and Jane Gair. 4.3 Citric Acid Cycle and Oxidative Phosphorylation. Concepts of Biology - 1st Canadian Edition, BCcampus
:::: '''Website 39''': [https://opened.cuny.edu/courseware/lesson/639/overview -CUNY]
:::: '''Website 40''': [https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain Brooder]
Ā 
:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|400px]]
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
Ā 
:::::: [[File:Jack Westin CORRECTION.png|400px]]
:::: '''Website 8''': [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]
Ā 
:::::: [[File:Expii OpenStax CORRECTION.png|400px]]
:::: '''Website 1''': [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 37''': [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''Website 39''': [https://opened.cuny.edu/courseware/lesson/639/overview -CUNY]
Ā 
:::::: [[File:Labxchange CORRECTION.png|400px]]
:::: '''Website 10''': [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Ā 
:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
:::: '''Website 4''': [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - By OpenStax College CC BY 3.0, via Wikimedia Commons
:::: '''Website 11''': [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
:::: '''Website 12''': [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::: '''Website 13''': [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]
:::: '''Website 14''': [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 15''': [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo]
:::: '''Website 16''': [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]
Ā 
:::::: [[File:Researchtweet CORRECTION.png|400px]]
:::: '''Website 17''': [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 18''': [https://microbenotes.com/electron-transport-chain/ Microbe Notes]
Ā 
:::::: [[File:BiochemDen CORRECTION.png|400px]]
:::: '''Website 19''': [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]
Ā 
:::::: [[File:Vector Mine CORRECTION.png|400px]]
:::: '''Website 20''': [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
:::: '''Website 21''': [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]
Ā 
:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
:::: '''Website 22''': [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]
Ā 
:::::: [[File:Khan Academy CORRECTION.png|400px]]
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
Ā 
:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002
Ā 
:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
:::: '''Website 23''': [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Ā 
:::::: [[File:Hyperphysics CORRECTION.png|400px]]
:::: '''Website 24''': [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]
Ā 
:::::: [[File:Labster Theory CORRECTION.png|400px]]
:::: '''Website 25''': [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]
Ā 
:::::: [[File:Nau.edu CORRECTION.png|400px]]
:::: '''Website 26''': [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]
Ā 
:::::: [[File:Quizlet CORRECTION.png|400px]]
:::: '''Website 27''': [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]
Ā 
:::::: [[File:ScienceDirect CORRECTION.png|400px]]
:::: '''Website 28''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]
Ā 
:::::: [[File:ScienceFacts CORRECTION.png|400px]]
:::: '''Website 29''': [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]
Ā 
:::::: [[File:SNC1D CORRECTION.png|400px]]
:::: '''Website 30''': [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]
Ā 
:::::: [[File:Unm.edu CORRECTION.png|400px]]
:::: '''Website 31''': [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]
Ā 
:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - By User:Rozzychan CC BY-SA 2.5, via Wikimedia Commons
:::: '''Website 32''': [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]
Ā 
:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18
Ā 
:::::: [[File:LibreTexts Chemistry_CORRECTION.png|400px]]
:::: '''Website 34''': [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3
Ā 
:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
:::: '''Website 35''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19
Ā 
:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
:::: '''Website 15''': [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 17''': [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]
Ā 
:::::: [[File:Ck12 CORRECTION.png|400px]]
:::: '''Website 36''': [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]
Ā 
:::::: [[File:BBC BITESIZE CORRECTION.png|400px]]
:::: '''Website 41''': [https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5Ā  - BBC BITESIZE cK-12]
Ā 
:::::: [[File:SparkNotes CORRECTION.png|400px]]
:::: '''Website 42''': [https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/ - SparkNotes]
Ā 
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By Gabi Slizewska

Latest revision as of 08:48, 1 May 2024

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - Published 2023-11-22 J Biol Chem (2024)

Ā» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ā€• FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Gnaiger E (2024) Complex II ambiguities ā€• FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
Version 6 (v6) 2023-06-21
Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - Ā»Link to all versionsĀ«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the Ī²-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
ā€¢ Keywords: coenzyme; cofactor; prosthetic group; coenzyme Q junction, Q-junction; Complex II, CII; H+-linked electron transfer; electron transfer system, ETS; matrix-ETS; membrane-ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; substrate; Gibbs force

ā€¢ O2k-Network Lab: AT Innsbruck Oroboros

Ā» Links: Ambiguity crisis, Complex II ambiguities, Complex I and hydrogen ion ambiguities in the electron transfer system
Acknowledgements: I thank Luiza H.D. Cardoso, Sabine Schmitt, and Chris Donnelly for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Additions to 312 references on CII-ambiguities after publication of JBC 2024

Last update 2023-12-19
Bektas 2019 Aging (Albany NY) CORRECTION.png
#1 Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY) 11:9234-63. - Ā»Bioblast linkĀ«


Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png
#2 Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm (Vienna) 116:1383-96. - Ā»Bioblast linkĀ«


Bon 2022 J Clin Case Rep Stud CORRECTION.png
#3 Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. J Clin Case Rep Stud 3. - Ā»Bioblast linkĀ«


Elsaeed 2021 Medicine Updates CORRECTION.png
#4 Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. Medicine Updates 6:41-63. - Ā»Bioblast linkĀ«


Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png
#5 Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140-58. - Ā»Bioblast linkĀ«


Iqbal 2014 Springer, New York CORRECTION.png
#6 Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. Springer, New York. - Ā»Bioblast linkĀ«


Keogh 2015 Biochim Biophys Acta CORRECTION.png
#7 Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847:1401-11. - Ā»Bioblast linkĀ«


Kunst 2023 Biomedicines CORRECTION.png
#8 Kunst C, Schmid S, Michalski M, TĆ¼men D, Buttenschƶn J, MĆ¼ller M, GĆ¼low K (2023) The influence of gut microbiota on oxidative stress and the immune system. Biomedicines 11:1388. - Ā»Bioblast linkĀ«


Lal 2018 Springer CORRECTION.png
#9 Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. Springer, Singapore:253-314. - Ā»Bioblast linkĀ«


Lane 2000 Pediatr Res CORRECTION.png
#10 Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. Pediatr Res 47:792-7. - Ā»Bioblast linkĀ«


Palma 2023 Oncogene CORRECTION.png
#11 Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? Oncogene. - Ā»Bioblast linkĀ«


Quintard 2018 Springer, Cham CORRECTION.png
#12 Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. - Ā»Bioblast linkĀ«


Reiss 2022 Exp Gerontol CORRECTION.png
#13 Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 164:111828. - Ā»Bioblast linkĀ«


Saghiv 2020 Springer, Cham CORRECTION.png
#14 Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. Springer, Cham. - Ā»Bioblast linkĀ«


SiouNing 2023 Molecules CORRECTION.png
#15 SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. Molecules 28:4357. - Ā»Bioblast linkĀ«


St John 2012 Cell Tissue Res CORRECTION.png
#16 St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res 349:795-808. - Ā»Bioblast linkĀ«


Su 2020 Mol Biol Rep CORRECTION.png
#17 Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Mol Biol Rep 47:8023-35. - Ā»Bioblast linkĀ«


Thorgersen 2022 Front Microbiol CORRECTION.png
#18 Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. Front Microbiol 13:965625. - Ā»Bioblast linkĀ«


Venkatachalam 2022 Cells CORRECTION.png
#19 Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11:1180. - Ā»Bioblast linkĀ«


Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png
#20 Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. Am J Physiol Heart Circ Physiol 291:H2462-72. - Ā»Bioblast linkĀ«


Wang 2017 Am J Reprod Immunol CORRECTION.png
#21 Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 77. - Ā»Bioblast linkĀ«


Wider 2023 Crit Care CORRECTION.png
#22 Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, Oā€™Neil B, Neumar RW, Przyklenk K, HĆ¼ttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. Crit Care 27:491. - Ā»Bioblast linkĀ«


Wu 2022 Front Chem CORRECTION.png
#23 Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. Front Chem 10:948453. - Ā»Bioblast linkĀ«


Zapico 2013 Aging Dis CORRECTION.png
#24 Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. Aging Dis 4:364-80. - Ā»Bioblast linkĀ«


Supplement: FADH2 or FADH as substrate of CII in websites

Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH ā†’ FAD+H (g), FADH2 ā†’ FAD+2H+ (aā€™, c, h-n), and FADH2 ā†’ FAD (a, b, d-f, o-Īø) should be corrected to FADH2 ā†’ FAD (Eq. 3b). NADH ā†’ NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH ā†’ NAD++H+ (a-g, m), NADH ā†’ NAD++2H+ (h-l), NADH+H+ ā†’ NAD++2H+ (j, k), and NADH ā†’ NAD (Ī¹) should be corrected to NADH+H+ ā†’ NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(aā€™)
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (aā€™,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (aā€™,b,v): Saylor Academy
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (aā€™,b,v): Khan Academy
Website 10 (aā€™,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,Ī²): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(Ī±)
Website 41 (Ī±): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(Ī²)
Website 11 (b,c,n,w,Ī²): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(Ī³)
Website 42 (Ī³): BiochemDen.com
Hopes CORRECTION.png
(Ī“)
Website 43 (Ī“): hopes, Huntingtonā€™s outreach project for education, at Stanford
Studocu CORRECTION.png
(Īµ)
Website 44 (Īµ): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(Ī¶)
Website 45 (Ī¶): ScienceDirect
BBC BITESIZE CORRECTION.png
(Ī·)
Website 46 (Ī·): BBC BITESIZE cK-12
Freepik CORRECTION.png
(Īø)
Website 47 (Īø): freepik
LibreTexts Chemistry CORRECTION.png
(Ī¹)
Website 48 (Ī¹): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry



from FAO and CII ambiguitiy to CII as a H+ in websites

CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna


(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ā€˜In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttleā€™ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Expii-Gabi Slizewska CORRECTION.png
xx: expii expii - Image source: By Gabi Slizewska: ā€˜FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electronsā€™ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
xx: BioNinja (retrieved 2023-05-04).


Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
Ā» Substrate
Ā» Product
Ā» Substrates as electron donors
Ā» Cellular substrates
Ā» MitoPedia: Substrates and metabolites
Ā» Substrate-uncoupler-inhibitor titration
Cofactor
Ā» Cofactor
Ā» Coenzyme, cosubstrate
Ā» Nicotinamide adenine dinucleotide
Ā» Coenzyme Q2
Ā» Prosthetic group
Ā» Flavin adenine dinucleotide
Referennces
Ā» Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Cited by

Gnaiger 2024 Ambiguity crisis.jpg
Gnaiger E (2024) Addressing the ambiguity crisis in bioenergetics and thermodynamics. MitoFit Preprints 2024.3. https://doi.org/10.26124/mitofit:2024-0003


Labels: MiParea: Patients, mt-Awareness 



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.