Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "See '''[[Electron-transfer-pathway state]]'''". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • 2-Hydroxyglutarate  + (Reduction of [[oxoglutarate]]Reduction of [[oxoglutarate]] (2OG or alpha-ketoglutarate) to '''2-hydroxyglutarate''' (2HG) is driven by NADPH. 2HG is also formed in side reactions of [[lactate dehydrogenase]] and [[malate dehydrogenase]]. Millimolar 2HG concentrations are found in some cancer cells compared to , whereas side activities of lactate and malate dehydrogenase form submillimolar s-2-hydroxyglutarate (s-2HG). However, even wild-type IDH1 and IDH2, notably under shifts toward reductive carboxylation glutaminolysis or changes in other enzymes, lead to “intermediate” 0.01–0.1 mM 2HG levels, for example, in breast carcinoma compared with nanomolar concentrations in benign cells. 2HG is considered an important player in reprogramming metabolism of cancer cells. reprogramming metabolism of cancer cells.)
  • Publicly deposited protocols  + (Researchers need to be introduced into adhResearchers need to be introduced into adhering to '''publicly deposited protocols'''. [[Prespecified protocols |Prespecified]] and [[time-stamped protocols]] that are publicly deposited may help to save Millions of Euros that may otherwise be wasted on research that is lacking coherent standards.search that is lacking coherent standards.)
  • Oxygen flow  + (Respiratory '''oxygen flow''' is the oxygeRespiratory '''oxygen flow''' is the oxygen consumption per total [[system]], which is an [[extensive quantity]]. [[Flow]] is advancement of a transformation in a system per time [mol·s<sup>-1</sup>], when 'system' is defined as the experimental system (e.g. an open or closed chamber). Flow is distinguished from the size-specific quantity [[flux]] obtained by normalization of flow per volume of the experimental system [mol·s<sup>-1</sup>·m<sup>-3</sup>]. An experimental object, e.g. a living cell, may be considered as the 'experimental system'. Then oxygen flow per cell has the unit [mol·s<sup>-1</sup>·x<sup>-1</sup>], where [x] is the [[elementary unit]] for a [[count]]. Oxygen flow or respiration per cell [amol·s<sup>-1</sup>·x<sup>-1</sup>] = [pmol·s<sup>-1</sup>·Mx<sup>-1</sup>] is normalized for the cell count, distinguished from [[oxygen flux]] (e.g. per mg protein or wet mass). These are different forms of [[normalization of rate]].zation of rate]].)
  • Reverse electron flow from CII to CI  + (Reverse electron flow from CII to CI stimuReverse electron flow from CII to CI stimulates production of [[ROS]] when mitochondria are incubated with succinate without rotenone in the LEAK state at a high [[mt-membrane potential]]. Depolarisation of the mt-membrane potential (''e.g.'' after ADP addition to stimulate OXPHOS) leads to inhibition of RET and therefore, decrease of RET-initiated ROS production. RET can be also measured when mitochondria are respiring using [[Glycerophosphate |Gp]] without rotenone in the [[LEAK respiration|LEAK]] state. Addition of I<sub>Q</sub>-side inhibitors (ubiquinone-binding side of CI) of [[Complex I |CI]] usually block RET. The following SUIT protocols allow you to measure RET-initiated H<sub>2</sub>O<sub>2</sub> flux in [[mitochondrial preparations]]: [[SUIT-009]] and [[SUIT-026]].[[SUIT-026]].)
  • Rhodamine 123  + (Rhodamine 123 (Rh123) is an [[extrinsic fluorophores|extrinsic fluorophore]]Rhodamine 123 (Rh123) is an [[extrinsic fluorophores|extrinsic fluorophore]] and can be used as a probe to determine changes in [[Mitochondrial_membrane_potential|mitochondrial membrane potential]]. Rh123 is a lipophilic cation that is accumulated by mitochondria in proportion to Δ''ψ''<sub>mt</sub>. Using ethanol as the solvent, the excitation maximum is 511 nm and the emission maximum is 534 nm. The recommended excitation and emission wavelengths in PBS are 488 and 515-575 nm, respectively (Sigma-Aldrich). are 488 and 515-575 nm, respectively (Sigma-Aldrich).)
  • Bioblasts  + (Richard Altmann (1894) defined the 'elemenRichard Altmann (1894) defined the 'elementary organisms' as '''Bioblasts'''. He observed granula in cells stained with osmium and viewed ‘the protoplasm as a colony of bioblasts’. "Microorganisms and granula are at an equivalent level and represent elementary organisms, which are found wherever living forces are acting, thus we want to describe them by the common term bioblasts. In the bioblast, that morphological unit of living matter appears to be found." [[Altmann 1894 Verlag Von Veit & Comp|Altmann 1894]]; p. 141. </br></br>Altmann is thus considered as the discoverer of [[mitochondria]] (the granula), which constitute together with the microorganisms the ''bioblasts'' (the elementary organisms). Bioblasts are the aliens with permanent residence in our cells ([[Bioblasts#Bioblasts_.E2.80.93_the_aliens_with_permanent_residence_in_our_cells|Gnaiger 2010]]).oblasts#Bioblasts_.E2.80.93_the_aliens_with_permanent_residence_in_our_cells|Gnaiger 2010]]).)
  • Save - DatLab  + (Save a DatLab file.)
  • Save as - DatLab  + (Save as a DatLab file.)
  • Zenodo  + (Science Europe: "Zenodo is an open source Science Europe: "Zenodo is an open source and free repository for storing data, code, materials, and any research artefact. It was created by CERN and launched within the frame of the OpenAIRE project, commissioned by the European Commission. It aims at fostering free and easy access to scientific results, scientific data, software, and publications to all researchers."are, and publications to all researchers.")
  • ASAPbio  + (Science only progresses as quickly and effScience only progresses as quickly and efficiently as it is shared. But even with all of the technological capabilities available today, the process of publishing scientific work is taking longer than ever. '''ASAPbio''' (Accelerating Science and Publication in biology) is a scientist-driven nonprofit working to address this problem by promoting innovation and transparency in life sciences communication.</br>In 2015, ASAPbio founder Ron Vale published an analysis of the increasing time to first-author publication among graduate students at UCSF, and proposed a more widespread use of preprints in the life sciences as a potential solution.the life sciences as a potential solution.)
  • Physiological pathway-control state  + (See [[Electron-transfer-pathway state]].)
  • Fluorescent marker  + (See [[Extrinsic fluorophores]])
  • Delete points  + (Select '''Delete points''' in the [[Marks - DatLab |Mark information]] window to remove all data points in the marked section of the active plot. See also [[Interpolate points]] and [[Restore points]] or [[Recalculate slope]].)
  • Interpolate points  + (Select '''Interpolate points''' in the [[Marks - DatLab |Mark information]] window to interpolate all data points in the marked section of the active graph. See also [[Delete points]] and [[Restore points]] or [[Recalculate slope]].)
  • Mouse control: Zoom  + (Select '''Mouse Control: Zoom''' in the Graph-menu or press [Ctrl+Z].)
  • Recalculate slope  + (Select '''Recalculate slope''' (Recalc. slSelect '''Recalculate slope''' (Recalc. slope) in the [[Marks - DatLab |Mark information]] window to restore data points in the marked section of the active Flux / Slope plot, if [[Delete points]] or [[Interpolate points]] was used before. The entire plot is recalculated, such that other marked sections which may have been deleted are also restored. Compare [[Restore points]].[[Restore points]].)
  • Restore points  + (Select '''Restore points''' in the [[Marks - DatLab |Mark information]] window to restore data points in the marked section of the active signal plot, if [[Delete points]] or [[Interpolate points]] was used before. Compare [[Recalculate slope]].)
  • Manage setups and templates - DatLab  + (Setups and templates in DatLab can be renamed or deleted under '''Manage setups''' or '''Manage templates'''.)
  • Graph options - DatLab  + (Several display options can be applied to a DatLab graph under '''Graph options'''.)
  • Comma for separating a term and its abbreviation  + (Should we used a '''comma for separating aShould we used a '''comma for separating a term and its abbreviation''' in the text? The SI Brochure frequently does not use a comma. The comma might be added, if it helps to clarify the distinction between the term and its abbreviation. The example “reduced Q fraction, ''Q''<sub>r</sub>” – the sequence of Q and ''Q''<sub>r</sub> may be confusing without comma. There will always be examples, where it is not clear, if a comma is needed.l always be examples, where it is not clear, if a comma is needed.)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.